Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Cancers (Basel) ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38730607

ABSTRACT

Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, with ~40-50% of patients diagnosed with non-metastatic disease (stages IA-IIIC). The treatment landscape is evolving rapidly as immunotherapies and targeted therapy are introduced in the non-metastatic setting, creating a need to assess patient outcomes prior to their introduction. This real-world study using Swedish National Lung Cancer Registry data examined outcomes (overall survival (OS) and time to next treatment or death (TTNTD)) and treatment patterns for adults diagnosed with non-metastatic NSCLC. Baseline characteristics and OS from diagnosis were described for all patients; OS, treatment patterns, and TTNTD from treatment start were described for the treatment subgroup (patients diagnosed from 2014 onwards), stratified by disease stage and initial treatment. OS and TTNTD were described using the Kaplan-Meier estimator. The overall population (2008-2019) included 17,433 patients; the treatment subgroup included 5147 patients. Median OS (interquartile range) overall ranged from 83.3 (31.6-165.3) months (stage I patients) to 10.4 (4.3-24.2) months (stage IIIB patients). Among the treatment subgroup, median OS and TTNTD were longest among patients receiving surgery versus other anticancer treatments. These findings provide a baseline upon which to evaluate the epidemiology of non-metastatic NSCLC as newer treatments are introduced.

2.
Cancer Epidemiol ; 89: 102545, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377945

ABSTRACT

BACKGROUND: A high body mass index (BMI, kg/m2) is associated with decreased risk of breast cancer before menopause, but increased risk after menopause. Exactly when this reversal occurs in relation to menopause is unclear. Locating that change point could provide insight into the role of adiposity in breast cancer etiology. METHODS: We examined the association between BMI and breast cancer risk in the Premenopausal Breast Cancer Collaborative Group, from age 45 up to breast cancer diagnosis, loss to follow-up, death, or age 55, whichever came first. Analyses included 609,880 women in 16 prospective studies, including 9956 who developed breast cancer before age 55. We fitted three BMI hazard ratio (HR) models over age-time: constant, linear, or nonlinear (via splines), applying piecewise exponential additive mixed models, with age as the primary time scale. We divided person-time into four strata: premenopause; postmenopause due to natural menopause; postmenopause because of interventional loss of ovarian function (bilateral oophorectomy (BO) or chemotherapy); postmenopause due to hysterectomy without BO. Sensitivity analyses included stratifying by BMI in young adulthood, or excluding women using menopausal hormone therapy. RESULTS: The constant BMI HR model provided the best fit for all four menopausal status groups. Under this model, the estimated association between a five-unit increment in BMI and breast cancer risk was HR=0.87 (95% CI: 0.85, 0.89) before menopause, HR=1.00 (95% CI: 0.96, 1.04) after natural menopause, HR=0.99 (95% CI: 0.93, 1.05) after interventional loss of ovarian function, and HR=0.88 (95% CI: 0.76, 1.02) after hysterectomy without BO. CONCLUSION: The BMI breast cancer HRs remained less than or near one during the 45-55 year age range indicating that the transition to a positive association between BMI and risk occurs after age 55.


Subject(s)
Breast Neoplasms , Menopause , Adult , Female , Humans , Middle Aged , Young Adult , Body Mass Index , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Breast Neoplasms/diagnosis , Premenopause , Prospective Studies , Risk Factors
3.
J Clin Oncol ; 42(8): 927-939, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38079601

ABSTRACT

PURPOSE: There is strong evidence that leisure-time physical activity is protective against postmenopausal breast cancer risk but the association with premenopausal breast cancer is less clear. The purpose of this study was to examine the association of physical activity with the risk of developing premenopausal breast cancer. METHODS: We pooled individual-level data on self-reported leisure-time physical activity across 19 cohort studies comprising 547,601 premenopausal women, with 10,231 incident cases of breast cancer. Multivariable Cox regression was used to estimate hazard ratios (HRs) and 95% CIs for associations of leisure-time physical activity with breast cancer incidence. HRs for high versus low levels of activity were based on a comparison of risk at the 90th versus 10th percentiles of activity. We assessed the linearity of the relationship and examined subtype-specific associations and effect modification across strata of breast cancer risk factors, including adiposity. RESULTS: Over a median 11.5 years of follow-up (IQR, 8.0-16.1 years), high versus low levels of leisure-time physical activity were associated with a 6% (HR, 0.94 [95% CI, 0.89 to 0.99]) and a 10% (HR, 0.90 [95% CI, 0.85 to 0.95]) reduction in breast cancer risk, before and after adjustment for BMI, respectively. Tests of nonlinearity suggested an approximately linear relationship (Pnonlinearity = .94). The inverse association was particularly strong for human epidermal growth factor receptor 2-enriched breast cancer (HR, 0.57 [95% CI, 0.39 to 0.84]; Phet = .07). Associations did not vary significantly across strata of breast cancer risk factors, including subgroups of adiposity. CONCLUSION: This large, pooled analysis of cohort studies adds to evidence that engagement in higher levels of leisure-time physical activity may lead to reduced premenopausal breast cancer risk.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Risk Factors , Exercise , Cohort Studies , Obesity/complications , Leisure Activities
4.
Int J Cancer ; 153(3): 512-523, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37190903

ABSTRACT

Type 2 diabetes is associated with raised risk of several cancers, but for type 1 diabetes risk data are fewer and inconsistent We assembled a cohort of 23 473 UK patients with insulin-treated diabetes diagnosed at ages <30, almost all of whom will have had type 1 diabetes, and for comparison 5058 diagnosed at ages 30 to 49, of whom we estimate two-thirds will have had type 2, and followed them for an average of 30 years for cancer incidence and mortality compared with general population rates. Patients aged <30 at diabetes diagnosis had significantly raised risks only for ovarian (standardised incidence ratio = 1.58; 95% confidence interval 1.16-2.11; P < .01) and vulval (3.55; 1.94-5.96; P < .001) cancers, with greatest risk when diabetes was diagnosed at ages 10-14. Risks of cancer overall (0.89; 0.84-0.95; P < .001) and sites including lung and larynx were significantly diminished. Patients diagnosed with diabetes at ages 30 to 49 had significantly raised risks of liver (1.76;1.08-2.72) and kidney (1.46;1.03-2.00) cancers, and reduced risk of cancer overall (0.89; 0.84-0.95). The raised ovarian and vulval cancer risks in patients with type 1 diabetes, especially with diabetes diagnosed around pubertal ages, suggest possible susceptibility of these organs at puberty to metabolic disruption at diabetes onset. Reduced risk of cancer overall, particularly smoking and alcohol-related sites, might reflect adoption of a healthy lifestyle.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Neoplasms , Humans , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Risk Factors , Follow-Up Studies , Incidence , United Kingdom/epidemiology
5.
Breast Cancer Res Treat ; 199(2): 323-334, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37020102

ABSTRACT

PURPOSE: Women with preeclampsia are more likely to deliver preterm. Reports of inverse associations between preeclampsia and breast cancer risk, and positive associations between preterm birth and breast cancer risk are difficult to reconcile. We investigated the co-occurrence of preeclampsia/gestational hypertension with preterm birth and breast cancer risk using data from the Premenopausal Breast Cancer Collaborative Group. METHODS: Across 6 cohorts, 3096 premenopausal breast cancers were diagnosed among 184,866 parous women. We estimated multivariable hazard ratios (HR) and 95% confidence intervals (CI) for premenopausal breast cancer risk using Cox proportional hazards regression. RESULTS: Overall, preterm birth was not associated (HR 1.02, 95% CI 0.92, 1.14), and preeclampsia was inversely associated (HR 0.86, 95% CI 0.76, 0.99), with premenopausal breast cancer risk. In stratified analyses using data from 3 cohorts, preterm birth associations with breast cancer risk were modified by hypertensive conditions in first pregnancies (P-interaction = 0.09). Preterm birth was positively associated with premenopausal breast cancer in strata of women with preeclampsia or gestational hypertension (HR 1.52, 95% CI: 1.06, 2.18), but not among women with normotensive pregnancy (HR = 1.09, 95% CI: 0.93, 1.28). When stratified by preterm birth, the inverse association with preeclampsia was more apparent, but not statistically different (P-interaction = 0.2), among women who did not deliver preterm (HR = 0.82, 95% CI 0.68, 1.00) than those who did (HR = 1.07, 95% CI 0.73, 1.56). CONCLUSION: Findings support an overall inverse association of preeclampsia history with premenopausal breast cancer risk. Estimates for preterm birth and breast cancer may vary according to other conditions of pregnancy.


Subject(s)
Breast Neoplasms , Hypertension, Pregnancy-Induced , Pre-Eclampsia , Premature Birth , Pregnancy , Infant, Newborn , Female , Humans , Hypertension, Pregnancy-Induced/epidemiology , Hypertension, Pregnancy-Induced/diagnosis , Pre-Eclampsia/epidemiology , Pre-Eclampsia/diagnosis , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Risk Factors , Premature Birth/epidemiology , Premature Birth/etiology
6.
Eur J Epidemiol ; 38(1): 11-29, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36593337

ABSTRACT

Laboratory and animal research support a protective role for vitamin D in breast carcinogenesis, but epidemiologic studies have been inconclusive. To examine comprehensively the relationship of circulating 25-hydroxyvitamin D [25(OH)D] to subsequent breast cancer incidence, we harmonized and pooled participant-level data from 10 U.S. and 7 European prospective cohorts. Included were 10,484 invasive breast cancer cases and 12,953 matched controls. Median age (interdecile range) was 57 (42-68) years at blood collection and 63 (49-75) years at breast cancer diagnosis. Prediagnostic circulating 25(OH)D was either newly measured using a widely accepted immunoassay and laboratory or, if previously measured by the cohort, calibrated to this assay to permit using a common metric. Study-specific relative risks (RRs) for season-standardized 25(OH)D concentrations were estimated by conditional logistic regression and combined by random-effects models. Circulating 25(OH)D increased from a median of 22.6 nmol/L in consortium-wide decile 1 to 93.2 nmol/L in decile 10. Breast cancer risk in each decile was not statistically significantly different from risk in decile 5 in models adjusted for breast cancer risk factors, and no trend was apparent (P-trend = 0.64). Compared to women with sufficient 25(OH)D based on Institute of Medicine guidelines (50- < 62.5 nmol/L), RRs were not statistically significantly different at either low concentrations (< 20 nmol/L, 3% of controls) or high concentrations (100- < 125 nmol/L, 3% of controls; ≥ 125 nmol/L, 0.7% of controls). RR per 25 nmol/L increase in 25(OH)D was 0.99 [95% confidence intervaI (CI) 0.95-1.03]. Associations remained null across subgroups, including those defined by body mass index, physical activity, latitude, and season of blood collection. Although none of the associations by tumor characteristics reached statistical significance, suggestive inverse associations were seen for distant and triple negative tumors. Circulating 25(OH)D, comparably measured in 17 international cohorts and season-standardized, was not related to subsequent incidence of invasive breast cancer over a broad range in vitamin D status.


Subject(s)
Breast Neoplasms , Vitamin D Deficiency , Humans , Female , Prospective Studies , Risk Factors , Vitamin D , Calcifediol , Vitamin D Deficiency/complications , Vitamin D Deficiency/epidemiology , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology
7.
Hum Reprod ; 37(5): 1069-1082, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35274129

ABSTRACT

STUDY QUESTION: Can additional genetic variants for circulating anti-Müllerian hormone (AMH) levels be identified through a genome-wide association study (GWAS) meta-analysis including a large sample of premenopausal women? SUMMARY ANSWER: We identified four loci associated with AMH levels at P < 5 × 10-8: the previously reported MCM8 locus and three novel signals in or near AMH, TEX41 and CDCA7. WHAT IS KNOWN ALREADY: AMH is expressed by antral stage ovarian follicles in women, and variation in age-specific circulating AMH levels has been associated with disease outcomes. However, the physiological mechanisms underlying these AMH-disease associations are largely unknown. STUDY DESIGN, SIZE, DURATION: We performed a GWAS meta-analysis in which we combined summary statistics of a previous AMH GWAS with GWAS data from 3705 additional women from three different cohorts. PARTICIPANTS/MATERIALS, SETTING, METHODS: In total, we included data from 7049 premenopausal female participants of European ancestry. The median age of study participants ranged from 15.3 to 48 years across cohorts. Circulating AMH levels were measured in either serum or plasma samples using different ELISA assays. Study-specific analyses were adjusted for age at blood collection and population stratification, and summary statistics were meta-analysed using a standard error-weighted approach. Subsequently, we functionally annotated GWAS variants that reached genome-wide significance (P < 5 × 10-8). We also performed a gene-based GWAS, pathway analysis and linkage disequilibrium score regression and Mendelian randomization (MR) analyses. MAIN RESULTS AND THE ROLE OF CHANCE: We identified four loci associated with AMH levels at P < 5 × 10-8: the previously reported MCM8 locus and three novel signals in or near AMH, TEX41 and CDCA7. The strongest signal was a missense variant in the AMH gene (rs10417628). Most prioritized genes at the other three identified loci were involved in cell cycle regulation. Genetic correlation analyses indicated a strong positive correlation among single nucleotide polymorphisms for AMH levels and for age at menopause (rg = 0.82, FDR = 0.003). Exploratory two-sample MR analyses did not support causal effects of AMH on breast cancer or polycystic ovary syndrome risk, but should be interpreted with caution as they may be underpowered and the validity of genetic instruments could not be extensively explored. LARGE SCALE DATA: The full AMH GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Whilst this study doubled the sample size of the most recent GWAS, the statistical power is still relatively low. As a result, we may still lack power to identify more genetic variants for AMH and to determine causal effects of AMH on, for example, breast cancer. Also, follow-up studies are needed to investigate whether the signal for the AMH gene is caused by reduced AMH detection by certain assays instead of actual lower circulating AMH levels. WIDER IMPLICATIONS OF THE FINDINGS: Genes mapped to the MCM8, TEX41 and CDCA7 loci are involved in the cell cycle and processes such as DNA replication and apoptosis. The mechanism underlying their associations with AMH may affect the size of the ovarian follicle pool. Altogether, our results provide more insight into the biology of AMH and, accordingly, the biological processes involved in ovarian ageing. STUDY FUNDING/COMPETING INTEREST(S): Nurses' Health Study and Nurses' Health Study II were supported by research grants from the National Institutes of Health (CA172726, CA186107, CA50385, CA87969, CA49449, CA67262, CA178949). The UK Medical Research Council and Wellcome (217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. This publication is the work of the listed authors, who will serve as guarantors for the contents of this article. A comprehensive list of grants funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf). Funding for the collection of genotype and phenotype data used here was provided by the British Heart Foundation (SP/07/008/24066), Wellcome (WT092830M and WT08806) and UK Medical Research Council (G1001357). M.C.B., A.L.G.S. and D.A.L. work in a unit that is funded by the University of Bristol and UK Medical Research Council (MC_UU_00011/6). M.C.B.'s contribution to this work was funded by a UK Medical Research Council Skills Development Fellowship (MR/P014054/1) and D.A.L. is a National Institute of Health Research Senior Investigator (NF-0616-10102). A.L.G.S. was supported by the study of Dynamic longitudinal exposome trajectories in cardiovascular and metabolic non-communicable diseases (H2020-SC1-2019-Single-Stage-RTD, project ID 874739). The Doetinchem Cohort Study was financially supported by the Ministry of Health, Welfare and Sports of the Netherlands. The funder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Ansh Labs performed the AMH measurements for the Doetinchem Cohort Study free of charge. Ansh Labs was not involved in the data analysis, interpretation or reporting, nor was it financially involved in any aspect of the study. R.M.G.V. was funded by the Honours Track of MSc Epidemiology, University Medical Center Utrecht with a grant from the Netherlands Organization for Scientific Research (NWO) (022.005.021). The Study of Women's Health Across the Nation (SWAN) has grant support from the National Institutes of Health (NIH), DHHS, through the National Institute on Aging (NIA), the National Institute of Nursing Research (NINR) and the NIH Office of Research on Women's Health (ORWH) (U01NR004061; U01AG012505, U01AG012535, U01AG012531, U01AG012539, U01AG012546, U01AG012553, U01AG012554, U01AG012495). The SWAN Genomic Analyses and SWAN Legacy have grant support from the NIA (U01AG017719). The Generations Study was funded by Breast Cancer Now and the Institute of Cancer Research (ICR). The ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent official views of the funders. The Sister Study was funded by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Environmental Health Sciences (Z01-ES044005 to D.P.S.); the AMH assays were supported by the Avon Foundation (02-2012-065 to H.B. Nichols and D.P.S.). The breast cancer genome-wide association analyses were supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the 'Ministère de l'Économie, de la Science et de l'Innovation du Québec' through Genome Québec and grant PSR-SIIRI-701, The National Institutes of Health (U19 CA148065, X01HG007492), Cancer Research UK (C1287/A10118, C1287/A16563, C1287/A10710) and The European Union (HEALTH-F2-2009-223175 and H2020 633784 and 634935). All studies and funders are listed in Michailidou et al. (Nature, 2017). F.J.M.B. has received fees and grant support from Merck Serono and Ferring BV. D.A.L. has received financial support from several national and international government and charitable funders as well as from Medtronic Ltd and Roche Diagnostics for research that is unrelated to this study. N.S. is scientific consultant for Ansh Laboratories. The other authors declare no competing interests.


Subject(s)
Anti-Mullerian Hormone , Breast Neoplasms , Genome-Wide Association Study , Anti-Mullerian Hormone/blood , Anti-Mullerian Hormone/genetics , Canada , Cohort Studies , Female , Humans , Nuclear Proteins
8.
Int J Cancer ; 150(11): 1804-1811, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35049043

ABSTRACT

Breast cancer is uncommon in men and knowledge about its causation limited. Obesity is a risk factor but there has been no investigation of whether weight change is an independent risk factor, as it is in women. In a national case-control study, 1998 men with breast cancer incident in England and Wales during 2005 to 2017 and 1597 male controls were interviewed about risk factors for breast cancer including anthropometric factors at several ages. Relative risks of breast cancer in relation to changes in body mass index (BMI) and waist/height ratios at these ages were obtained by logistic regression modelling. There were significant trends of increasing breast cancer risk with increase in BMI from age 20 to 40 (odds ratio [OR] 1.11 [95% confidence interval (CI) 1.05-1.17] per 2 kg/m2 increase in BMI; P < .001), and from age 40 to 60 (OR 1.12 [1.04-1.20]; P = .003), and with increase in self-reported adiposity compared to peers at age 11 to BMI compared with peers at age 20 (OR 1.19 [1.09-1.30]; P < .001). Increase in waist/height ratio from age 20 to 5 years before diagnosis was also highly significantly associated with risk (OR 1.13 [1.08-1.19]; P < .001). The associations with increases in BMI and waist/height ratio were significant independently of each other and of BMI or waist/height ratio at the start of the period of change analysed, and effects were similar for invasive and in situ tumours separately. Increases in BMI and abdominal obesity are each risk factors for breast cancer in men, independently of obesity per se. These associations might relate to increasing oestrogen levels with weight gain, but this needs investigation.


Subject(s)
Breast Neoplasms, Male , Breast Neoplasms , Adult , Body Mass Index , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Case-Control Studies , Child , Female , Humans , Male , Middle Aged , Risk Factors , Wales/epidemiology , Weight Gain , Young Adult
9.
Int J Epidemiol ; 50(6): 1936-1947, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34458915

ABSTRACT

BACKGROUND: The history of gestational diabetes mellitus (GDM) has been associated with breast cancer risk in some studies, particularly in young women, but results of cohort studies are conflicting. METHODS: We pooled data from 257 290 young (age <55 years) women from five cohorts. We used multivariable Cox proportional-hazards regression to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between GDM history and risk of breast cancer, overall and by oestrogen receptor (ER) status, before age 55 years, adjusted for established breast cancer risk factors. RESULTS: Five percent of women reported a history of GDM and 6842 women reported an incident breast-cancer diagnosis (median follow-up = 16 years; maximum = 24 years). Compared with parous women without GDM, women with a history of GDM were not at increased risk of young-onset breast cancer overall (HR = 0.90; 95% CI: 0.78, 1.03) or by ER status (HR = 0.96; 95% CI: 0.79, 1.16 for ER-positive; HR = 1.07; 95% CI: 0.78, 1.47 for ER-negative). Compared with nulliparous women, parous women with a history of GDM had a lower risk of breast cancer overall (HR = 0.79; 95% CI: 0.68, 0.91) and of ER-positive (HR = 0.82; 95% CI: 0.66, 1.02) but not ER-negative (HR = 1.09; 95% CI: 0.76, 1.54) invasive breast cancer. These results were consistent with the HRs comparing parous women without GDM to nulliparous women. CONCLUSIONS: Results of this analysis do not support the hypothesis that GDM is a risk factor for breast cancer in young women. Our findings suggest that the well-established protective effect of parity on risk of ER-positive breast cancer persists even for pregnancies complicated by GDM.


Subject(s)
Breast Neoplasms , Diabetes, Gestational , Breast Neoplasms/epidemiology , Diabetes, Gestational/epidemiology , Female , Humans , Middle Aged , Parity , Pregnancy , Prospective Studies , Receptors, Estrogen , Risk Factors
10.
J Pathol ; 256(4): 388-401, 2022 04.
Article in English | MEDLINE | ID: mdl-34897700

ABSTRACT

ARID1A (BAF250a) is a component of the SWI/SNF chromatin modifying complex, plays an important tumour suppressor role, and is considered prognostic in several malignancies. However, in ovarian carcinomas there are contradictory reports on its relationship to outcome, immune response, and correlation with clinicopathological features. We assembled a series of 1623 endometriosis-associated ovarian carcinomas, including 1078 endometrioid (ENOC) and 545 clear cell (CCOC) ovarian carcinomas, through combining resources of the Ovarian Tumor Tissue Analysis (OTTA) Consortium, the Canadian Ovarian Unified Experimental Resource (COEUR), local, and collaborative networks. Validated immunohistochemical surrogate assays for ARID1A mutations were applied to all samples. We investigated associations between ARID1A loss/mutation, clinical features, outcome, CD8+ tumour-infiltrating lymphocytes (CD8+ TILs), and DNA mismatch repair deficiency (MMRd). ARID1A loss was observed in 42% of CCOCs and 25% of ENOCs. We found no associations between ARID1A loss and outcomes, stage, age, or CD8+ TIL status in CCOC. Similarly, we found no association with outcome or stage in endometrioid cases. In ENOC, ARID1A loss was more prevalent in younger patients (p = 0.012) and was associated with MMRd (p < 0.001) and the presence of CD8+ TILs (p = 0.008). Consistent with MMRd being causative of ARID1A mutations, in a subset of ENOCs we also observed an association with ARID1A loss-of-function mutation as a result of small indels (p = 0.035, versus single nucleotide variants). In ENOC, the association with ARID1A loss, CD8+ TILs, and age appears confounded by MMRd status. Although this observation does not explicitly rule out a role for ARID1A influence on CD8+ TIL infiltration in ENOC, given current knowledge regarding MMRd, it seems more likely that effects are dominated by the hypermutation phenotype. This large dataset with consistently applied biomarker assessment now provides a benchmark for the prevalence of ARID1A loss-of-function mutations in endometriosis-associated ovarian cancers and brings clarity to the prognostic significance. © 2021 The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma , Endometriosis , Ovarian Neoplasms , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Brain Neoplasms , CD8-Positive T-Lymphocytes/pathology , Canada , Colorectal Neoplasms , DNA-Binding Proteins/genetics , Endometriosis/genetics , Endometriosis/pathology , Female , Humans , Neoplastic Syndromes, Hereditary , Nuclear Proteins/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Prognosis , Transcription Factors/genetics
11.
J Clin Endocrinol Metab ; 106(11): e4542-e4553, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34157104

ABSTRACT

CONTEXT: We previously reported that anti-Müllerian hormone (AMH), a marker of ovarian reserve, is positively associated with breast cancer risk, consistent with other studies. OBJECTIVE: This study assessed whether risk factors for breast cancer are correlates of AMH concentration. METHODS: This cross-sectional study included 3831 healthy premenopausal women (aged 21-57, 87% aged 35-49) from 10 cohort studies among the general population. RESULTS: Adjusting for age and cohort, AMH positively associated with age at menarche (P < 0.0001) and parity (P = 0.0008) and inversely associated with hysterectomy/partial oophorectomy (P = 0.0008). Compared with women of normal weight, AMH was lower (relative geometric mean difference 27%, P < 0.0001) among women who were obese. Current oral contraceptive (OC) use and current/former smoking were associated with lower AMH concentration than never use (40% and 12% lower, respectively, P < 0.0001). We observed higher AMH concentrations among women who had had a benign breast biopsy (15% higher, P = 0.03), a surrogate for benign breast disease, an association that has not been reported. In analyses stratified by age (<40 vs ≥40), associations of AMH with body mass index and OCs were similar in younger and older women, while associations with the other factors (menarche, parity, hysterectomy/partial oophorectomy, smoking, and benign breast biopsy) were limited to women ≥40 (P-interaction < 0.05). CONCLUSION: This is the largest study of AMH and breast cancer risk factors among women from the general population (not presenting with infertility), and it suggests that most associations are limited to women over 40, who are approaching menopause and whose AMH concentration is declining.


Subject(s)
Anti-Mullerian Hormone/blood , Breast Neoplasms/blood , Premenopause/blood , Adult , Aging/blood , Biomarkers , Body Mass Index , Breast Diseases/blood , Cohort Studies , Cross-Sectional Studies , Female , Humans , Middle Aged , Ovarian Reserve , Pregnancy , Risk Factors
13.
Br J Cancer ; 124(12): 2026-2034, 2021 06.
Article in English | MEDLINE | ID: mdl-33846525

ABSTRACT

BACKGROUND: The National Health Service England (NHS) classifies individuals as eligible for lung cancer screening using two risk prediction models, PLCOm2012 and Liverpool Lung Project-v2 (LLPv2). However, no study has compared the performance of lung cancer risk models in the UK. METHODS: We analysed current and former smokers aged 40-80 years in the UK Biobank (N = 217,199), EPIC-UK (N = 30,813), and Generations Study (N = 25,777). We quantified model calibration (ratio of expected to observed cases, E/O) and discrimination (AUC). RESULTS: Risk discrimination in UK Biobank was best for the Lung Cancer Death Risk Assessment Tool (LCDRAT, AUC = 0.82, 95% CI = 0.81-0.84), followed by the LCRAT (AUC = 0.81, 95% CI = 0.79-0.82) and the Bach model (AUC = 0.80, 95% CI = 0.79-0.81). Results were similar in EPIC-UK and the Generations Study. All models overestimated risk in all cohorts, with E/O in UK Biobank ranging from 1.20 for LLPv3 (95% CI = 1.14-1.27) to 2.16 for LLPv2 (95% CI = 2.05-2.28). Overestimation increased with area-level socioeconomic status. In the combined cohorts, USPSTF 2013 criteria classified 50.7% of future cases as screening eligible. The LCDRAT and LCRAT identified 60.9%, followed by PLCOm2012 (58.3%), Bach (58.0%), LLPv3 (56.6%), and LLPv2 (53.7%). CONCLUSION: In UK cohorts, the ability of risk prediction models to classify future lung cancer cases as eligible for screening was best for LCDRAT/LCRAT, very good for PLCOm2012, and lowest for LLPv2. Our results highlight the importance of validating prediction tools in specific countries.


Subject(s)
Early Detection of Cancer/methods , Lung Neoplasms/diagnosis , Patient Selection , Adult , Aged , Calibration , Cohort Studies , Early Detection of Cancer/standards , Female , Humans , Lung Neoplasms/epidemiology , Male , Middle Aged , Models, Statistical , Predictive Value of Tests , Risk Assessment , Risk Factors , Social Class , State Medicine , United Kingdom/epidemiology
14.
Breast Cancer Res ; 23(1): 22, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33588869

ABSTRACT

BACKGROUND: The Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) and the Tyrer-Cuzick breast cancer risk prediction models are commonly used in clinical practice and have recently been extended to include polygenic risk scores (PRS). In addition, BOADICEA has also been extended to include reproductive and lifestyle factors, which were already part of Tyrer-Cuzick model. We conducted a comparative prospective validation of these models after incorporating the recently developed 313-variant PRS. METHODS: Calibration and discrimination of 5-year absolute risk was assessed in a nested case-control sample of 1337 women of European ancestry (619 incident breast cancer cases) aged 23-75 years from the Generations Study. RESULTS: The extended BOADICEA model with reproductive/lifestyle factors and PRS was well calibrated across risk deciles; expected-to-observed ratio (E/O) at the highest risk decile :0.97 (95 % CI 0.51 - 1.86) for women younger than 50 years and 1.09 (0.66 - 1.80) for women 50 years or older. Adding reproductive/lifestyle factors and PRS to the BOADICEA model improved discrimination modestly in younger women (area under the curve (AUC) 69.7 % vs. 69.1%) and substantially in older women (AUC 64.6 % vs. 56.8%). The Tyrer-Cuzick model with PRS showed evidence of overestimation at the highest risk decile: E/O = 1.54(0.81 - 2.92) for younger and 1.73 (1.03 - 2.90) for older women. CONCLUSION: The extended BOADICEA model identified women in a European-ancestry population at elevated breast cancer risk more accurately than the Tyrer-Cuzick model with PRS. With the increasing availability of PRS, these analyses can inform choice of risk models incorporating PRS for risk stratified breast cancer prevention among women of European ancestry.


Subject(s)
Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Genetic Predisposition to Disease , Models, Theoretical , Multifactorial Inheritance , White People , Adult , Aged , Algorithms , Female , Humans , Middle Aged , Population Surveillance , Risk Assessment , Risk Factors , Young Adult
15.
Br J Cancer ; 124(4): 842-854, 2021 02.
Article in English | MEDLINE | ID: mdl-33495599

ABSTRACT

BACKGROUND: Epidemiological studies provide strong evidence for a role of endogenous sex hormones in the aetiology of breast cancer. The aim of this analysis was to identify genetic variants that are associated with urinary sex-hormone levels and breast cancer risk. METHODS: We carried out a genome-wide association study of urinary oestrone-3-glucuronide and pregnanediol-3-glucuronide levels in 560 premenopausal women, with additional analysis of progesterone levels in 298 premenopausal women. To test for the association with breast cancer risk, we carried out follow-up genotyping in 90,916 cases and 89,893 controls from the Breast Cancer Association Consortium. All women were of European ancestry. RESULTS: For pregnanediol-3-glucuronide, there were no genome-wide significant associations; for oestrone-3-glucuronide, we identified a single peak mapping to the CYP3A locus, annotated by rs45446698. The minor rs45446698-C allele was associated with lower oestrone-3-glucuronide (-49.2%, 95% CI -56.1% to -41.1%, P = 3.1 × 10-18); in follow-up analyses, rs45446698-C was also associated with lower progesterone (-26.7%, 95% CI -39.4% to -11.6%, P = 0.001) and reduced risk of oestrogen and progesterone receptor-positive breast cancer (OR = 0.86, 95% CI 0.82-0.91, P = 6.9 × 10-8). CONCLUSIONS: The CYP3A7*1C allele is associated with reduced risk of hormone receptor-positive breast cancer possibly mediated via an effect on the metabolism of endogenous sex hormones in premenopausal women.


Subject(s)
Breast Neoplasms/genetics , Cytochrome P-450 CYP3A/genetics , Estrone/analogs & derivatives , Pregnanediol/analogs & derivatives , Progesterone/urine , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Alleles , Breast Neoplasms/enzymology , Breast Neoplasms/urine , Case-Control Studies , Cytochrome P-450 CYP3A/metabolism , Estrone/genetics , Estrone/urine , Female , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Pregnanediol/genetics , Pregnanediol/urine , Premenopause
16.
medRxiv ; 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33173903

ABSTRACT

Anti-Müllerian hormone (AMH) is expressed by antral stage ovarian follicles in women. Consequently, circulating AMH levels are detectable until menopause. Variation in age-specific AMH levels has been associated with breast cancer and polycystic ovary syndrome (PCOS), amongst other diseases. Identification of genetic variants underlying variation in AMH levels could provide clues about the physiological mechanisms that explain these AMH-disease associations. To date, only one variant in MCM8 has been identified to be associated with circulating AMH levels in women. We aimed to identify additional variants for AMH through a GWAS meta-analysis including data from 7049 premenopausal women of European ancestry, which more than doubles the sample size of the largest previous GWAS. We identified four loci associated with AMH levels at p < 5×10 -8 : the previously reported MCM8 locus and three novel signals in or near AMH, TEX41 , and CDCA7 . The strongest signal was a missense variant in the AMH gene (rs10417628). Most prioritized genes at the other three identified loci were involved in cell cycle regulation. Genetic correlation analyses indicated a strong positive correlation among SNPs for AMH levels and for age at menopause (r g = 0.82, FDR=0.003). Exploratory Mendelian randomization analyses did not support a causal effect of AMH on breast cancer or PCOS risk, but should be interpreted with caution as they may be underpowered and the validity of genetic instruments could not be extensively explored. In conclusion, we identified a variant in the AMH gene and three other loci that may affect circulating AMH levels in women.

17.
Sci Rep ; 10(1): 11762, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678138

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype associated with a high rate of recurrence and poor prognosis. Recently we identified a hypermethylation in the long noncoding RNA 299 (LINC00299) gene in blood-derived DNA from TNBC patients compared with healthy controls implying that LINC00299 hypermethylation may serve as a circulating biomarker for TNBC. In the present study, we investigated whether LINC00299 methylation is associated with TNBC in a prospective nested breast cancer case-control study within the Generations Study. Methylation at cg06588802 in LINC00299 was measured in 154 TNBC cases and 159 breast cancer-free matched controls using MethyLight droplet digital PCR. To assess the association between methylation level and TNBC risk, logistic regression was used to calculate odd ratios and 95% confidence intervals, adjusted for smoking status. We found no evidence for association between methylation levels and TNBC overall (P = 0.062). Subgroup analysis according to age at diagnosis and age at blood draw revealed increased methylation levels in TNBC cases compared with controls in the young age groups [age 26-52 (P = 0.0025) and age 22-46 (P = 0.001), respectively]. Our results suggest a potential association of LINC00299 hypermethylation with TNBC in young women.


Subject(s)
DNA Methylation , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics , Triple Negative Breast Neoplasms/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , Biomarkers, Tumor , Cell Line, Tumor , Female , Gene Expression Profiling , Genetic Heterogeneity , Humans , Middle Aged , Odds Ratio , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
18.
Breast Cancer Res ; 22(1): 19, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32046759

ABSTRACT

As a consequence of responding to colleagues who asked about the publication of the original article [1], the authors have determined that the data published in Table 4 of the paper are incorrect.

19.
Int J Cancer ; 147(5): 1306-1314, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32012248

ABSTRACT

Early-adulthood body size is strongly inversely associated with risk of premenopausal breast cancer. It is unclear whether subsequent changes in weight affect risk. We pooled individual-level data from 17 prospective studies to investigate the association of weight change with premenopausal breast cancer risk, considering strata of initial weight, timing of weight change, other breast cancer risk factors and breast cancer subtype. Hazard ratios (HR) and 95% confidence intervals (CI) were obtained using Cox regression. Among 628,463 women, 10,886 were diagnosed with breast cancer before menopause. Models adjusted for initial weight at ages 18-24 years and other breast cancer risk factors showed that weight gain from ages 18-24 to 35-44 or to 45-54 years was inversely associated with breast cancer overall (e.g., HR per 5 kg to ages 45-54: 0.96, 95% CI: 0.95-0.98) and with oestrogen-receptor(ER)-positive breast cancer (HR per 5 kg to ages 45-54: 0.96, 95% CI: 0.94-0.98). Weight gain from ages 25-34 was inversely associated with ER-positive breast cancer only and weight gain from ages 35-44 was not associated with risk. None of these weight gains were associated with ER-negative breast cancer. Weight loss was not consistently associated with overall or ER-specific risk after adjusting for initial weight. Weight increase from early-adulthood to ages 45-54 years is associated with a reduced premenopausal breast cancer risk independently of early-adulthood weight. Biological explanations are needed to account for these two separate factors.


Subject(s)
Breast Neoplasms/epidemiology , Premenopause , Weight Gain , Adolescent , Adult , Age Factors , Body Weight , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Cohort Studies , Female , Humans , Middle Aged , Receptors, Estrogen/metabolism , Risk , Young Adult
20.
J Natl Cancer Inst ; 112(3): 278-285, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31165158

ABSTRACT

BACKGROUND: External validation of risk models is critical for risk-stratified breast cancer prevention. We used the Individualized Coherent Absolute Risk Estimation (iCARE) as a flexible tool for risk model development and comparative model validation and to make projections for population risk stratification. METHODS: Performance of two recently developed models, one based on the Breast and Prostate Cancer Cohort Consortium analysis (iCARE-BPC3) and another based on a literature review (iCARE-Lit), were compared with two established models (Breast Cancer Risk Assessment Tool and International Breast Cancer Intervention Study Model) based on classical risk factors in a UK-based cohort of 64 874 white non-Hispanic women (863 patients) age 35-74 years. Risk projections in a target population of US white non-Hispanic women age 50-70 years assessed potential improvements in risk stratification by adding mammographic breast density (MD) and polygenic risk score (PRS). RESULTS: The best calibrated models were iCARE-Lit (expected to observed number of cases [E/O] = 0.98, 95% confidence interval [CI] = 0.87 to 1.11) for women younger than 50 years, and iCARE-BPC3 (E/O = 1.00, 95% CI = 0.93 to 1.09) for women 50 years or older. Risk projections using iCARE-BPC3 indicated classical risk factors can identify approximately 500 000 women at moderate to high risk (>3% 5-year risk) in the target population. Addition of MD and a 313-variant PRS is expected to increase this number to approximately 3.5 million women, and among them, approximately 153 000 are expected to develop invasive breast cancer within 5 years. CONCLUSIONS: iCARE models based on classical risk factors perform similarly to or better than BCRAT or IBIS in white non-Hispanic women. Addition of MD and PRS can lead to substantial improvements in risk stratification. However, these integrated models require independent prospective validation before broad clinical applications.


Subject(s)
Breast Neoplasms/epidemiology , Models, Statistical , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Middle Aged , Reproducibility of Results , Risk , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...