Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 7(39): 63779-63792, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27588473

ABSTRACT

Redox mechanisms play an important role in the control of various signaling pathways. Here, we report that Second mitochondrial activator of caspases (Smac) mimetic-induced cell death is regulated by redox signaling. We show that RSL3, a glutathione (GSH) peroxidase (GPX) 4 inhibitor, or Erastin, an inhibitor of the cystine/glutamate antiporter, cooperate with the Smac mimetic BV6 to induce reactive oxygen species (ROS)-dependent cell death in acute lymphoblastic leukemia (ALL) cells. Addition of the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to rescue ROS-induced cell death, demonstrating that RSL3/BV6- or Erastin/BV6-induced cell death occurs in a caspase-independent manner. Interestingly, the iron chelator Deferoxamine (DFO) significantly inhibits RSL3/BV6-induced cell death, whereas it is unable to rescue cell death by Erastin/BV6, showing that RSL3/BV6-, but not Erastin/BV6-mediated cell death depends on iron. ROS production is required for both RSL3/BV6- and Erastin/BV6-induced cell death, since the ROS scavenger α-tocopherol (α-Toc) rescues RSL3/BV6- and Erastin/BV6-induced cell death. By comparison, genetic or pharmacological inhibition of lipid peroxidation by GPX4 overexpression or ferrostatin (Fer)-1 significantly decreases RSL3/BV6-, but not Erastin/BV6-induced cell death, despite inhibition of lipid peroxidation upon exposure to RSL3/BV6 or Erastin/BV6. Of note, inhibition of lipid peroxidation by Fer-1 protects from RSL3/BV6-, but not from Erastin/BV6-stimulated ROS production, indicating that other forms of ROS besides lipophilic ROS occur during Erastin/BV6-induced cell death. Taken together, RSL3/BV6 and Erastin/BV6 differentially regulate redox signaling and cell death in ALL cells. While RSL3/BV6 cotreatment induces ferroptotic cell death, Erastin/BV6 stimulates oxidative cell death independently of iron. These findings have important implications for the therapeutic targeting of redox signaling to enhance Smac mimetic-induced cell death in ALL.


Subject(s)
Carbolines/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Proteins/metabolism , Piperazines/pharmacology , Amino Acid Chloromethyl Ketones/pharmacology , Apoptosis , Apoptosis Regulatory Proteins , Cell Death , Deferoxamine/pharmacology , Gene Silencing , Humans , Iron/metabolism , Lipid Peroxidation , Mitochondria/metabolism , Oxidation-Reduction , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
2.
Biochem Pharmacol ; 105: 14-22, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26774450

ABSTRACT

Disturbed redox homeostasis with both elevated reactive oxygen species (ROS) levels and antioxidant defense mechanisms has been reported in acute lymphoblastic leukemia (ALL). We therefore hypothesized that inhibition of pathways responsible for ROS detoxification renders ALL cells more susceptible for cell death. Here, we report that pharmacological inhibitors of key pathways for the elimination of ROS, i.e. Erastin, buthionine sulfoximine (BSO) and Auranofin, sensitize ALL cells for cell death upon treatment with the Smac mimetic LCL161 that antagonizes Inhibitor of Apoptosis (IAP) proteins. Erastin, BSO or Auranofin significantly increase LCL161-induced cell death and also act in concert with LCL161 to profoundly suppress long-term clonogenic survival in several ALL cell lines. Erastin or BSO cooperates with LCL161 to stimulate ROS production and lipid peroxidation prior to cell death. ROS production and lipid peroxidation are required for this cotreatment-induced cell death, since ROS scavengers or pharmacological inhibition of lipid peroxidation provides significant protection against cell death. These results emphasize that inhibition of antioxidant defense mechanisms can serve as a potent approach to prime ALL cells for LCL161-induced cell death.


Subject(s)
Antineoplastic Agents/administration & dosage , Apoptosis/physiology , Drug Delivery Systems/methods , Homeostasis/physiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Thiazoles/administration & dosage , Apoptosis/drug effects , Cell Death/drug effects , Cell Death/physiology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Homeostasis/drug effects , Humans , Jurkat Cells , Methionine/administration & dosage , Methionine/analogs & derivatives , Oxidation-Reduction/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Reactive Oxygen Species/metabolism , Sulfoxides/administration & dosage
3.
Cancer Lett ; 366(1): 32-43, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26028172

ABSTRACT

Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in acute myeloid leukemia (AML) and contribute to resistance to programmed cell death. Here, we report that inhibition of IAP proteins by the small-molecule Smac mimetic BV6 acts together with histone deacetylase (HDAC) inhibitors (HDACIs) such as MS275 or SAHA to trigger cell death in AML cell lines in a synergistic manner, as underscored by calculation of combination index (CI). Also, BV6 and HDACIs cooperate to trigger DNA fragmentation, a marker of apoptotic cell death, and to suppress long-term clonogenic survival of AML cells. In contrast, equimolar concentrations of BV6 and MS275 or SAHA do not synergize to elicit cell death in normal peripheral blood lymphocytes (PBLs), emphasizing some tumor cell selectivity of this combination treatment. Addition of the tumor necrosis factor (TNF)α-blocking antibody Enbrel significantly reduces BV6/MS275-induced cell death in the majority of AML cell lines, indicating that autocrine/paracrine TNFα signaling contributes to cell death. Remarkably, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to rescue MV4-11, Molm13 and OCI-AML3 cells and even enhances BV6/MS275-mediated cell death, whereas zVAD.fmk reduces BV6/MS275-induced cell death in NB4 cells. Annexin-V/propidium iodide (PI) double staining reveals that BV6/MS275 cotreatment predominately increases the percentage of double-positive cells. Of note, the Receptor-Interacting Protein (RIP)1 inhibitor necrostatin-1 (Nec-1) or the Mixed Lineage Kinase Domain-Like protein (MLKL) inhibitor necrosulfonamide (NSA) significantly reduce BV6/MS275-induced cell death in the presence of zVAD.fmk, suggesting that BV6/MS275 cotreatment triggers necroptosis when caspases are inhibited. Thus, BV6 acts in concert with HDACIs to induce cell death in AML cells and can bypass apoptosis resistance, at least in several AML cell lines, by engaging necroptosis as an alternative route of regulated cell death. The identification of a novel synergism of BV6 and HDACIs has important implications for the development of new treatment strategies for AML.


Subject(s)
Apoptosis/drug effects , Histone Deacetylase Inhibitors/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Oligopeptides/pharmacology , Amino Acid Chloromethyl Ketones/pharmacology , Caspases/physiology , Cell Line, Tumor , Drug Synergism , Humans , Leukemia, Myeloid, Acute/pathology , Signal Transduction , Tumor Necrosis Factor-alpha/physiology
4.
Blood ; 124(2): 240-50, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24855207

ABSTRACT

Apoptosis resistance contributes to poor outcome in pediatric acute lymphoblastic leukemia (ALL). Here, we identify a novel synergistic combination of Smac mimetic BV6 and glucocorticoids (GCs) (ie, dexamethasone, prednisolone) to trigger apoptosis in ALL cells. BV6 and GCs similarly cooperate to induce apoptosis in patient-derived leukemia samples, underlining the clinical relevance. Importantly, BV6/dexamethasone cotreatment is significantly more effective than monotherapy to delay leukemia growth in a patient-derived xenograft model of pediatric ALL without causing additional side effects. In contrast, BV6 does not increase cytotoxicity of dexamethasone against nonmalignant peripheral blood lymphocytes, mesenchymal stromal cells, and CD34-positive hematopoietic cells. We identify a novel mechanism by showing that BV6 and dexamethasone cooperate to deplete cIAP1, cIAP2, and XIAP, thereby promoting assembly of the ripoptosome, a RIP1/FADD/caspase-8-containing complex. This complex is critical and is required for BV6/dexamethasone-induced cell death, because RIP1 knockdown reduces caspase activation, reactive oxygen species production, and cell death. Ripoptosome formation occurs independently of autocrine/paracrine loops of death receptor ligands, because blocking antibodies for TNFα, tumor necrosis factor-related apoptosis-inducing ligand, or CD95 ligand or knockdown of death receptors fail to rescue BV6/dexamethasone-induced cell death. This is the first report showing that BV6 sensitizes for GC-triggered cell death by promoting ripoptosome formation with important implications for apoptosis-targeted therapies of ALL.


Subject(s)
Apoptosis/drug effects , GTPase-Activating Proteins/metabolism , Glucocorticoids/pharmacology , Oligopeptides/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Multimerization/drug effects , Animals , Caspase 8/metabolism , Cells, Cultured , Child , Drug Synergism , Fas-Associated Death Domain Protein/metabolism , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...