Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Front Immunol ; 15: 1457887, 2024.
Article in English | MEDLINE | ID: mdl-39267747

ABSTRACT

NKG2D is an activating receptor expressed by natural killer (NK) cells and other cytotoxic lymphocytes that plays a pivotal role in the elimination of neoplastic cells through recognition of different stress-induced cell surface ligands (NKG2DL). To employ this mechanism for cancer immunotherapy, we generated NKG2D-engaging bispecific antibodies that selectively redirect immune effector cells to cancer cells expressing the tumor-associated antigen ErbB2 (HER2). NKG2D-specific single chain fragment variable (scFv) antibodies cross-reactive toward the human and murine receptors were derived by consecutive immunization of chicken with the human and murine antigens, followed by stringent screening of a yeast surface display immune library. Four distinct species cross-reactive (sc) scFv domains were selected, and reformatted into a bispecific engager format by linking them via an IgG4 Fc domain to a second scFv fragment specific for ErbB2. The resulting molecules (termed scNKAB-ErbB2) were expressed as disulfide-linked homodimers, and demonstrated efficient binding to ErbB2-positive cancer cells as well as NKG2D-expressing primary human and murine lymphocytes, and NK-92 cells engineered with chimeric antigen receptors derived from human and murine NKG2D (termed hNKAR and mNKAR). Two of the scNKAB-ErbB2 molecules were found to compete with the natural NKG2D ligand MICA, while the other two engagers interacted with an epitope outside of the ligand binding site. Nevertheless, all four tested scNKAB-ErbB2 antibodies were similarly effective in redirecting the cytotoxic activity of primary human and murine lymphocytes as well as hNKAR-NK-92 and mNKAR-NK-92 cells to ErbB2-expressing targets, suggesting that further development of these species cross-reactive engager molecules for cancer immunotherapy is warranted.


Subject(s)
Antibodies, Bispecific , Cross Reactions , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily K , Receptor, ErbB-2 , Animals , Humans , Receptor, ErbB-2/immunology , NK Cell Lectin-Like Receptor Subfamily K/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Mice , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Cross Reactions/immunology , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/genetics , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/therapy , Immunotherapy/methods
2.
Mol Ther Oncol ; 32(3): 200850, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39176070

ABSTRACT

T cell-derived cancers are hallmarked by heterogeneity, aggressiveness, and poor clinical outcomes. Available targeted therapies are severely limited due to a lack of target antigens that allow discrimination of malignant from healthy T cells. Here, we report a novel approach for the treatment of T cell diseases based on targeting the clonally rearranged T cell receptor displayed by the cancerous T cell population. As a proof of concept, we identified an antibody with unique specificity toward a distinct T cell receptor (TCR) and developed antibody-drug conjugates, precisely recognizing and eliminating target T cells while preserving overall T cell repertoire integrity and cellular immunity. Our anti-TCR antibody-drug conjugates demonstrated effective receptor-mediated cell internalization, associated with induction of cancer cell death with strong signs of apoptosis. Furthermore, cell proliferation-inhibiting bystander effects observed on target-negative cells may contribute to the molecules' anti-tumor properties precluding potential tumor escape mechanisms. To our knowledge, this represents the first anti-TCR antibody-drug conjugate designed as custom-tailored immunotherapy for T cell-driven pathologies.

3.
Antibodies (Basel) ; 13(2)2024 May 02.
Article in English | MEDLINE | ID: mdl-38804304

ABSTRACT

The optimization of the affinity of monoclonal antibodies is crucial for the development of drug candidates, as it can impact the efficacy of the drug and, thus, the dose and dosing regimen, limit adverse effects, and reduce therapy costs. Here, we present the affinity maturation of an EGFR×PD-L1 Two-in-One antibody for EGFR binding utilizing site-directed mutagenesis and yeast surface display. The isolated antibody variants target EGFR with a 60-fold-improved affinity due to the replacement of a single amino acid in the CDR3 region of the light chain. The binding properties of the Two-in-One variants were confirmed using various methods, including BLI measurements, real-time antigen binding measurements on surfaces with a mixture of both recombinant proteins and cellular binding experiments using flow cytometry as well as real-time interaction cytometry. An AlphaFold-based model predicted that the amino acid exchange of tyrosine to glutamic acid enables the formation of a salt bridge to an arginine at EGFR position 165. This easily adaptable approach provides a strategy for the affinity maturation of bispecific antibodies with respect to the binding of one of the two antigens.

4.
Biol Chem ; 405(7-8): 443-459, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38297991

ABSTRACT

Antibody-based therapies are revolutionizing cancer treatment and experience a steady increase from preclinical and clinical pipelines to market share. While the clinical success of monoclonal antibodies is frequently limited by low response rates, treatment resistance and various other factors, multispecific antibodies open up new prospects by addressing tumor complexity as well as immune response actuation potently improving safety and efficacy. Novel antibody approaches involve simultaneous binding of two antigens on one cell implying increased specificity and reduced tumor escape for dual tumor-associated antigen targeting and enhanced and durable cytotoxic effects for dual immune cell-related antigen targeting. This article reviews antibody and cell-based therapeutics for oncology with intrinsic dual targeting of either tumor cells or immune cells. As revealed in various preclinical studies and clinical trials, dual targeting molecules are promising candidates constituting the next generation of antibody drugs for fighting cancer.


Subject(s)
Immunotherapy , Neoplasms , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/immunology , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology
5.
Front Immunol ; 14: 1258700, 2023.
Article in English | MEDLINE | ID: mdl-37841262

ABSTRACT

Cancerous B cells are almost indistinguishable from their non-malignant counterparts regarding their surface antigen expression. Accordingly, the challenge to be faced consists in elimination of the malignant B cell population while maintaining a functional adaptive immune system. Here, we present an IgM-specific antibody-drug conjugate masked by fusion of the epitope-bearing IgM constant domain. Antibody masking impaired interaction with soluble pentameric as well as cell surface-expressed IgM molecules rendering the antibody cytotoxically inactive. Binding capacity of the anti-IgM antibody drug conjugate was restored upon conditional protease-mediated demasking which consequently enabled target-dependent antibody internalization and subsequent induction of apoptosis in malignant B cells. This easily adaptable approach potentially provides a novel mechanism of clonal B cell lymphoma eradication to the arsenal available for non-Hodgkin's lymphoma treatment.


Subject(s)
Immunoconjugates , Lymphoma, B-Cell , Lymphoma, Non-Hodgkin , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Lymphoma, B-Cell/drug therapy , Immunoglobulin M
6.
Front Immunol ; 14: 1170042, 2023.
Article in English | MEDLINE | ID: mdl-37081888

ABSTRACT

To construct a trispecific IgG-like antibody at least three different binding moieties need to be combined, which results in a complex architecture and challenging production of these molecules. Here we report for the first time the construction of trispecific natural killer cell engagers based on a previously reported two-in-one antibody combined with a novel anti-CD16a common light chain module identified by yeast surface display (YSD) screening of chicken-derived immune libraries. The resulting antibodies simultaneously target epidermal growth factor receptor (EGFR), programmed death-ligand 1 (PD-L1) and CD16a with two Fab fragments, resulting in specific cellular binding properties on EGFR/PD-L1 double positive tumor cells and a potent ADCC effect. This study paves the way for further development of multispecific therapeutic antibodies derived from avian immunization with desired target combinations, valencies, molecular symmetries and architectures.


Subject(s)
B7-H1 Antigen , Killer Cells, Natural , B7-H1 Antigen/metabolism , Antibodies/metabolism , ErbB Receptors/metabolism
7.
Angew Chem Int Ed Engl ; 61(45): e202210883, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36049110

ABSTRACT

Sactipeptides are ribosomally synthesized peptides containing a unique sulfur to α-carbon crosslink. Catalyzed by sactisynthases, this thioether pattern endows sactipeptides with enhanced structural, thermal, and proteolytic stability, which makes them attractive scaffolds for the development of novel biotherapeutics. Herein, we report the in-depth study on the substrate tolerance of the sactisynthase AlbA to catalyze the formation of thioether bridges in sactipeptides. We identified a possible modification site within the sactipeptide subtilosin A allowing for peptide engineering without compromising formation of thioether bridges. A panel of natural and hybrid sactipeptides was produced to study the AlbA-mediated formation of thioether bridges, which were identified mass-spectrometrically. In a proof-of-principle study, we re-engineered subtilosin A to a thioether-bridged, specific streptavidin targeting peptide, opening the door for the functional engineering of sactipeptides.


Subject(s)
Peptides , Sulfides , Sulfides/chemistry , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL