Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
ACS Omega ; 9(24): 26066-26074, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911785

ABSTRACT

Pathogen infection represents the greatest challenge to agricultural crop production, resulting in significant economic loss. Conventional pesticides are used to control such infection but can result in antimicrobial resistance and detrimental effects on the plant, environment, and human health. Due to nitric oxide's (NO) endogenous roles in plant immune responses, treatment with exogenous NO represents an attractive nonpesticide approach for eradicating plant pathogens. In this work, the antimicrobial activity of small-molecule NO donors of varying NO-release kinetics was evaluated against Pseudomonas syringae and Botrytis cinerea, two prevalent plant pathogens. Intermediate NO-release kinetics proved to be most effective at eradicating these pathogens in vitro. A selected NO donor (methyl tris diazeniumdiolate; MD3) was capable of treating both bacterial infection of plant leaves and fungal infection of tomato fruit without exerting toxicity to earthworms. Taken together, these results demonstrate the potential for utilizing NO as a broad-spectrum, environmentally safe pesticide and may guide development of other NO donors for such application.

2.
ACS Appl Bio Mater ; 7(6): 3796-3809, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38776418

ABSTRACT

Drug resistance and off-target toxicity are two of the greatest challenges to chemotherapeutic melanoma treatments. Nitric oxide (NO) represents an attractive alternative to conventional therapeutics due to its numerous anticancer properties and low probability of engendering resistance. As NO is highly reactive, macromolecular NO donors are needed for the controlled and targeted delivery of NO for therapeutic applications. Herein, mesoporous silica nanoparticles (MSNs) coated with hyaluronic acid (HA) were developed as a NO delivery system to facilitate controlled delivery to cancer cells through both passive and active targeting via the enhanced permeation and retention effect and directed binding of HA with CD44 receptors, respectively. The aminosilane modification, HA concentration, and HA molecular weight were systematically evaluated to facilitate the MSN coating and NO loading. The hydrodynamic diameter and dispersity of the nanoparticles increased after HA coating due to the hydrophilic nature of HA, with greater increases observed at higher HA molecular weight. Lower starting concentrations of HA and aminosilanes with longer alkyl chains favored more efficient HA coating. Faster NO-release kinetics and lower NO payloads were observed for the HA-coated MSNs relative to uncoated MSNs. However, the localized delivery of NO to cancer cells through the active targeting conferred by HA increased levels of oxidative stress and induced mitochondria-mediated apoptosis in melanoma cells. Cytotoxicity was also evaluated against human dermal fibroblasts, with the use of 6 kDa HA-coated MSNs resulting in the greatest therapeutic indices. Enhanced internalization of HA-coated nanoparticles into melanoma cells versus uncoated nanoparticles was visualized with confocal microscopy and quantified by fluorescence spectroscopy. In total, HA-coated MSNs represent a promising NO delivery system for potential use as a chemotherapeutic for skin melanomas.


Subject(s)
Hyaluronic Acid , Materials Testing , Nanoparticles , Nitric Oxide , Particle Size , Silicon Dioxide , Hyaluronic Acid/chemistry , Humans , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Drug Delivery Systems , Cell Line, Tumor , Cell Proliferation/drug effects
3.
J Fungi (Basel) ; 10(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38786663

ABSTRACT

Pathogenic fungi are an increasing health threat due to the rise in drug resistance. The limited number of antifungals currently available and growing incidence of multi-drug-resistant fungi has caused rising healthcare costs and a decreased quality of life for patients with fungal infections. Nitric oxide (NO) has previously been shown to act as an antimicrobial agent, albeit with a limited understanding of the effects of the NO-release kinetics against pathogenic fungi. Herein, the antifungal effects of four nitric oxide-releasing small molecules were studied against the pathogenic fungi Candida albicans, Candida auris, Cryptococcus neoformans, and Aspergillus fumigatus, to demonstrate the broad-spectrum antifungal activity of NO. A bolus dose of NO was found to eradicate fungi after 24 h, where nitric oxide donors with shorter half-lives achieved antifungal activity at lower concentrations and thus had wider selectivity indexes. Each NO donor was found to cause a severe surface destruction of fungi, and all NO donors exhibited compatibility with currently prescribed antifungals against several different fungi species.

4.
Sens Actuators B Chem ; 4052024 Apr 15.
Article in English | MEDLINE | ID: mdl-38464808

ABSTRACT

Nitric oxide (NO) release from S-nitrosothiol-modified mesoporous silica nanoparticles imbedded in the diffusion limiting layer of a glucose sensor has been demonstrated as an effective strategy for mitigating the foreign body response common to sensor implantation, resulting in improved analytical performance. With respect to potential clinical translation of this approach, the effects of sterilization on NO-releasing biosensors require careful evaluation, as NO donor chemistry is sensitive to temperature and environment. Herein, we evaluated the influence of multiple sterilization methods on 1) sterilization success; 2) NO payload; and 3) sensor performance to establish the commercialization potential of NO-releasing glucose sensors. Sensors were treated with ethylene oxide gas, the most common sterilization method for intricate medical devices, which led to undesirable (i.e., premature) release of NO. To reduce NO loss, alternative sterilization methods that were studied included exposure to ultraviolet (UV) light and immersion in 70% ethanol (EtOH). Sterilization cycle times required to reach a 10-6 sterility assurance level were determined for both UV light and 70% EtOH against Gram-negative and -positive bacteria. The longest sterilization cycle times (258 s and 628 s for 70% EtOH and UV light, respectively) resulted in a negligible impact on benchtop sensor performance. However, sterilization with 70% ethanol resulted in a reduced NO-release duration. Ultraviolet light exposure for ~10 min proved successful at eliminating bacteria without compromising NO payloads or durations and presents as the most promising method for sterilization of these sensors. In addition, storage of NO-releasing sensor membranes at -20 and -80°C resulted in preservation of NO release for 6 and 12 months, respectively.

5.
Antimicrob Agents Chemother ; 68(2): e0132723, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38206003

ABSTRACT

Non-tuberculosis mycobacteria (NTM) can cause severe respiratory infection in patients with underlying pulmonary conditions, and these infections are extremely difficult to treat. In this report, we evaluate a nitric oxide (NO)-releasing prodrug [methyl tris diazeniumdiolate (MD3)] against a panel of NTM clinical isolates and as a treatment for acute and chronic NTM infections in vivo. Its efficacy in inhibiting growth or killing mycobacteria was explored in vitro alongside evaluation of the impact to primary human airway epithelial tissue. Airway epithelial tissues remained viable after exposure at concentrations of MD3 needed to kill mycobacteria, with no inherent toxic effect from drug scaffold after NO liberation. Resistance studies conducted via serial passage with representative Mycobacterium abscessus isolates demonstrated no resistance to MD3. When administered directly into the lung via intra-tracheal administration in mice, MD3 demonstrated significant reduction in M. abscessus bacterial load in both acute and chronic models of M. abscessus lung infection. In summary, MD3 is a promising treatment for complex NTM pulmonary infection, specifically those caused by M. abscessus, and warrants further exploration as a therapeutic.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium , Prodrugs , Humans , Animals , Mice , Nitric Oxide , Anti-Bacterial Agents/pharmacology , Prodrugs/pharmacology , Mycobacterium Infections, Nontuberculous/drug therapy , Nontuberculous Mycobacteria , Microbial Sensitivity Tests
6.
ACS Infect Dis ; 9(11): 2316-2324, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37831756

ABSTRACT

Antimicrobial resistance poses a serious threat to global health, necessitating research for alternative approaches to treating infections. Nitric oxide (NO) is an endogenously produced molecule involved in multiple physiological processes, including the response to pathogens. Herein, we employed microscopy- and fluorescence-based techniques to investigate the effects of NO delivered from exogenous NO donors on the bacterial cell envelopes of pathogens, including resistant strains. Our goal was to assess the role of NO donor architecture (small molecules, oligosaccharides, dendrimers) on bacterial wall degradation to representative Gram-negative bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecium) upon treatment. Depending on the NO donor, bactericidal NO doses spanned 1.5-5.5 mM (total NO released). Transmission electron microscopy of bacteria following NO exposure indicated extensive membrane damage to Gram-negative bacteria with warping of the cellular shape and disruption of the cell wall. Among the small-molecule NO donors, those providing a more extended release (t1/2 = 120 min) resulted in greater damage to Gram-negative bacteria. In contrast, rapid NO release (t1/2 = 24 min) altered neither the morphology nor the roughness of these bacteria. For Gram-positive bacteria, NO treatments did not result in any drastic change to cellular shape or membrane integrity, despite permeation of the cell wall as measured by depolarization assays. The use of positively charged quaternary ammonium (QA)-modified NO-releasing dendrimer proved to be the only NO donor system capable of penetrating the thick peptidoglycan layer of Gram-positive bacteria.


Subject(s)
Anti-Bacterial Agents , Nitric Oxide , Nitric Oxide/pharmacology , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Staphylococcus aureus , Gram-Positive Bacteria
7.
ACS Infect Dis ; 9(9): 1730-1741, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37566512

ABSTRACT

Compared to planktonic bacteria, biofilms are notoriously difficult to eradicate due to their inherent protection against the immune response and antimicrobial agents. Inducing biofilm dispersal to improve susceptibility to antibiotics is an attractive therapeutic avenue for eradicating biofilms. Nitric oxide (NO), an endogenous antibacterial agent, has previously been shown to induce biofilm dispersal, but with limited understanding of the effects of NO-release properties. Herein, the antibiofilm effects of five promising NO-releasing biopolymer candidates were studied by assessing dispersal, changes in biofilm viscoelasticity, and increased sensitization to tobramycin after treatment with NO. A threshold level of NO was needed to achieve biofilm dispersal, with longer-releasing systems requiring lower concentrations. The most positively charged NO-release systems (from the presence of primary amines) led to the greatest reduction in viscoelasticity of Pseudomonas aeruginosa biofilms. Co-treatment of tobramycin with the NO-releasing biopolymer greatly decreased the dose of tobramycin required to eradicate tobramycin-susceptible and -resistant biofilms in both cellular and tissue models.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Nitric Oxide/pharmacology , Tobramycin/pharmacology , Anti-Infective Agents/pharmacology , Biofilms
9.
ACS Appl Mater Interfaces ; 15(24): 28907-28921, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37285144

ABSTRACT

In an attempt to address the significant morbidity, mortality, and economic cost associated with tunneled dialysis catheter (TDC) dysfunction, we report the development of nitric oxide-releasing dialysis catheter lock solutions. Catheter lock solutions with a range of NO payloads and release kinetics were prepared using low-molecular-weight N-diazeniumdiolate nitric oxide donors. Nitric oxide released through the catheter surface as a dissolved gas was maintained at therapeutically relevant levels for at least 72 h, supporting clinical translatability (interdialytic period). Slow, sustained NO release from the catheter surface prevented bacterial adhesion in vitro by 88.9 and 99.7% for Pseudomonas aeruginosa and Staphylococcus epidermidis, respectively, outperforming a burst NO-release profile. Furthermore, bacteria adhered to the catheter surface in vitro prior to lock solution use was reduced by 98.7 and 99.2% for P. aeruginosa and S. epidermidis, respectively, when using a slow releasing NO donor, demonstrating both preventative and treatment potential. The adhesion of proteins to the catheter surface, a process often preceding biofilm formation and thrombosis, was also lessened by 60-65% by sustained NO release. In vitro cytotoxicity of catheter extract solutions to mammalian cells was minimal, supporting the non-toxic nature of the NO-releasing lock solutions. The use of the NO-releasing lock solution in an in vivo TDC porcine model demonstrated decreased infection and thrombosis, enhanced catheter functionality, and improved outcome (i.e., likelihood of survival) as a result of catheter use.


Subject(s)
Catheter-Related Infections , Central Venous Catheters , Thrombosis , Animals , Anti-Bacterial Agents/therapeutic use , Catheter-Related Infections/microbiology , Hemodialysis Solutions , Mammals , Nitric Oxide , Renal Dialysis , Swine , Thrombosis/drug therapy
10.
Sens Diagn ; 2(1): 203-211, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36741248

ABSTRACT

A planar electrode system was developed to permit the real-time, selective detection of hydrogen sulfide (H2S) from stimulated cells. Planar carbon electrodes were produced via stencil printing carbon ink through a laser cut vinyl mask. Electrodes were preconditioned using a constant potential amperometry methodology to prevent sensor drift resulting from elemental sulfur adsorption. Modification with a bilaminar coating (electropolymerized ortho-phenylenediamine and a fluorinated xerogel) facilitated high selectivity to H2S. To demonstrate the biological application of this planar sensor system, H2S released from 17ß-estradiol-stimulated human umbilical vein endothelial cells (HUVECs) was quantified in situ in real-time. Stimulated HUVECs released sustained H2S levels for hours before returning to baseline. Cellular viability assays demonstrated negligible cell cytotoxicity at the electrochemical potentials required for analysis.

11.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232937

ABSTRACT

Implantable glucose biosensors provide real-time information about blood glucose fluctuations, but their utility and accuracy are time-limited due to the foreign body response (FBR) following their insertion beneath the skin. The slow release of nitric oxide (NO), a gasotransmitter with inflammation regulatory properties, from a sensor surface has been shown to dramatically improve sensors' analytical biocompatibility by reducing the overall FBR response. Indeed, work in a porcine model suggests that as long as the implants (sensors) continue to release NO, even at low levels, the inflammatory cell infiltration and resulting collagen density are lessened. While these studies strongly support the benefits of NO release in mitigating the FBR, the mechanisms through which exogenous NO acts on the surrounding tissue, especially under the condition of hyperglycemia, remain vague. Such knowledge would inform strategies to refine appropriate NO dosage and release kinetics for optimal therapeutic activity. In this study, we evaluated mediator, immune cell, and mRNA expression profiles in the local tissue microenvironment surrounding implanted sensors as a function of NO release, diabetes, and implantation duration. A custom porcine wound healing-centric multiplex gene array was developed for nanoString barcoding analysis. Tissues adjacent to sensors with sustained NO release abrogated the implant-induced acute and chronic FBR through modulation of the tissue-specific immune chemokine and cytokine microenvironment, resulting in decreased cellular recruitment, proliferation, and activation at both the acute (7-d) and chronic (14-d) phases of the FBR. Further, we found that sustained NO release abrogated the implant-induced acute and chronic foreign body response through modulation of mRNA encoding for key immunological signaling molecules and pathways, including STAT1 and multiple STAT1 targets including MAPK14, IRAK4, MMP2, and CXCL10. The condition of diabetes promoted a more robust FBR to the implants, which was also controlled by sustained NO release.


Subject(s)
Foreign Bodies , Gasotransmitters , Mitogen-Activated Protein Kinase 14 , Animals , Blood Glucose/analysis , Collagen/metabolism , Cytokines , Foreign-Body Reaction , Glucose , Interleukin-1 Receptor-Associated Kinases , Matrix Metalloproteinase 2 , Nitric Oxide/metabolism , RNA, Messenger , Swine
12.
ACS Biomater Sci Eng ; 8(6): 2537-2552, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35580341

ABSTRACT

Two glycosaminoglycan (GAG) biopolymers, hyaluronic acid (HA) and chondroitin sulfate (CS), were chemically modified via carbodiimide chemistry to facilitate the loading and release of nitric oxide (NO) to develop a multi-action wound healing agent. The resulting NO-releasing GAGs released 0.2-0.9 µmol NO mg-1 GAG into simulated wound fluid with NO-release half-lives ranging from 20 to 110 min. GAGs containing alkylamines with terminal primary amines and displaying intermediate NO-release kinetics exhibited potent, broad spectrum bactericidal action against three strains each of Pseudomonas aeruginosa and Staphylococcus aureus ranging in antibiotic resistance profile. NO loading of the GAGs was also found to decrease murine TLR4 activation, suggesting that the therapeutic exhibits anti-inflammatory mechanisms. In vitro adhesion and proliferation assays utilizing human dermal fibroblasts and human epidermal keratinocytes displayed differences as a function of the GAG backbone, alkylamine identity, and NO-release properties. In combination with antibacterial properties, the adhesion and proliferation profiles of the GAG derivatives enabled the selection of the most promising wound healing candidates for subsequent in vivo studies. A P. aeruginosa-infected murine wound model revealed the benefits of CS over HA as a pro-wound healing NO donor scaffold, with benefits of accelerated wound closure and decreased bacterial burden attributable to both active NO release and the biopolymer backbone.


Subject(s)
Glycosaminoglycans , Nitric Oxide , Animals , Fibroblasts , Glycosaminoglycans/pharmacology , Glycosaminoglycans/therapeutic use , Humans , Hyaluronic Acid/pharmacology , Mice , Nitric Oxide/chemistry , Wound Healing/physiology
13.
ACS Biomater Sci Eng ; 7(6): 2444-2452, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33848421

ABSTRACT

The tissue response to polyurethane (PU)-coated implants employing active and/or passive FBR mitigation techniques was evaluated over a 28 day study in a diabetic swine model. Active FBR mitigation was achieved through the sustained release of nitric oxide (NO) from a mesoporous silica nanoparticle-doped PU coating. Passive FBR mitigation was achieved through the application of a foam- or fiber-based topcoat. These topcoats were designed to possess topographical features known to promote tissue integration with foam-coated implants having pore sizes of approximately 50 µm and fiber-coated implants consisting of fiber diameters of less than 1 µm. Nitric oxide-release profiles were minimally impacted by the presence of either topcoat. Inflammatory cell density and collagen density at the implant-tissue interface were assessed at 7, 14, 21, and 28 days following implantation. Nitric oxide-releasing implants had significantly lower inflammatory cell density and collagen density than non-NO-releasing controls. The presence of a topcoat did not significantly impact inflammatory cell density, though top-coated textured implants resulted in significantly lower collagen density, irrespective of NO release. Overall, coatings that combine NO release with surface texture demonstrated the greatest potential for tissue-based biomedical device applications.


Subject(s)
Foreign Bodies , Nitric Oxide , Animals , Collagen , Polyurethanes , Silicon Dioxide , Swine
14.
Bioconjug Chem ; 32(2): 367-375, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33449618

ABSTRACT

The synthesis and anticancer cell activity of nitric oxide (NO)-releasing carbon quantum dots (CQDs) are described as potential theranostics. A series of secondary amine-modified CQDs were prepared using a hydrothermal method to modify ß-cyclodextrin with hydroxyl and primary amine terminal functional groups. Subsequent reaction of the CQDs with NO gas under alkaline conditions yielded N-diazeniumdiolate NO donor-modified CQDs with adjustable NO payloads (0.2-1.1 µmol/mg) and release kinetics (half-lives from 29 to 79 min) depending on the level of secondary amines and surface functional groups. The anticancer activity of the NO-releasing CQDs against Pa14c, A549, and SW480 cancer cell lines proved to be dependent on both NO payloads and surface functionalizations. Primary amine-modified CQDs with NO payloads ∼1.11 µmol/mg exhibited the greatest anticancer action. A fluorescence microscopy study demonstrated the utility of these NO-releasing CQDs as dual NO-releasing and bioimaging probes.


Subject(s)
Carbon/chemistry , Nitric Oxide/chemistry , Precision Medicine , Quantum Dots/chemistry , Amines/chemistry , Cell Line, Tumor , Humans , Spectrum Analysis/methods
15.
Biomacromolecules ; 22(2): 867-879, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33372774

ABSTRACT

Taking advantage of their respective wound-healing roles in physiology, the dual activity of hyaluronic acid (HA) and nitric oxide (NO) was combined to create a single-agent wound therapeutic. Carboxylic acid groups of HA (6 and 90 kDa) were chemically modified with a series of alkylamines via carbodiimide chemistry to provide secondary amines for subsequent N-diazeniumdiolate NO donor formation. The resulting NO-releasing HA derivatives stored 0.3-0.6 µmol NO mg-1 and displayed diverse release kinetics (5-75 min NO-release half-lives) under physiological conditions. The 6 kDa HA with terminal primary amines and intermediate release kinetics exhibited broad-spectrum bactericidal activity against common wound pathogens, including planktonic methicillin-resistant Staphylococcus aureus as well as planktonic and biofilm-based multidrug-resistant Pseudomonas aeruginosa. The treatment of infected murine wounds with NO-releasing HA facilitated more rapid wound closure and decreased the quantity of the P. aeruginosa genetic material in the remaining wound tissue. Hyaluronidase readily degraded the HA derivatives, indicating that NO donor modification did not prohibit endogenous biodegradation pathways.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Hyaluronic Acid , Mice , Nitric Oxide , Pseudomonas aeruginosa
16.
Redox Biol ; 39: 101826, 2021 02.
Article in English | MEDLINE | ID: mdl-33352464

ABSTRACT

RATIONALE: Inhalation of nitric oxide (NO) exerts selective pulmonary vasodilation. Nitric oxide also has an antimicrobial effect on a broad spectrum of pathogenic viruses, bacteria and fungi. OBJECTIVES: The aim of this study was to investigate the effect of inhaled NO on bacterial burden and disease outcome in a murine model of Klebsiella pneumonia. METHODS: Mice were infected with Klebsiella pneumoniae and inhaled either air alone, air mixed with constant levels of NO (at 80, 160, or 200 parts per million (ppm)) or air intermittently mixed with high dose NO (300 ppm). Forty-eight hours after airway inoculation, the number of viable bacteria in lung, spleen and blood was determined. The extent of infiltration of the lungs by inflammatory cells and the level of myeloperoxidase activity in the lungs were measured. Atomic force microscopy was used to investigate a possible mechanism by which nitric oxide exerts a bactericidal effect. MEASUREMENTS AND MAIN RESULTS: Compared to control animals infected with K. pneumoniae and breathed air alone, intermittent breathing of NO (300 ppm) reduced viable bacterial counts in lung and spleen tissue. Inhaled NO reduced infection-induced lung inflammation and improved overall survival of mice. NO destroyed the cell wall of K. pneumoniae and killed multiple-drug resistant K. pneumoniae in-vitro. CONCLUSIONS: Intermittent administration of high dose NO may be an effective approach to the treatment of pneumonia caused by K. pneumoniae.


Subject(s)
Klebsiella pneumoniae , Pneumonia , Animals , Anti-Bacterial Agents , Disease Models, Animal , Lung , Mice , Nitric Oxide
17.
J Biomed Mater Res A ; 109(5): 713-721, 2021 05.
Article in English | MEDLINE | ID: mdl-32654391

ABSTRACT

The prevalence of periodontal disease poses a significant global health burden. Treatments for these diseases, primarily focused on removal and eradication of dental plaque biofilms, are challenging due to limited access to periodontal pockets where these oral pathogens reside. Herein, we report on the development and characterization of nitric oxide (NO)-releasing carboxymethylcellulose (CMC) derivatives and evaluate their in vitro bactericidal efficacy against planktonic Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, two prominent periodontopathogens. Bactericidal exposure assays revealed that three of the synthesized NO-releasing polymers were capable of reducing bacterial viability of both species by 99.9% in 2 hr at concentrations of 4 mg ml-1 or lower, reflecting NO's potent and rapid bactericidal action. The NO-releasing CMCs elicited minimal toxicity to human gingival fibroblasts at their bactericidal concentrations following 24-hr exposure.


Subject(s)
Aggregatibacter actinomycetemcomitans/drug effects , Anti-Bacterial Agents/pharmacology , Azo Compounds/pharmacology , Carboxymethylcellulose Sodium , Ethanolamines/pharmacology , Nitric Oxide/pharmacology , Periodontal Diseases/microbiology , Polyamines/pharmacology , Porphyromonas gingivalis/drug effects , Propylamines/pharmacology , Anti-Bacterial Agents/administration & dosage , Azo Compounds/administration & dosage , Azo Compounds/chemistry , Biopolymers , Cell Line , Diamines/chemistry , Drug Carriers , Drug Delivery Systems , Ethanolamines/administration & dosage , Ethanolamines/chemistry , Fibroblasts/drug effects , Gingiva/cytology , Humans , Molecular Structure , Nitric Oxide/administration & dosage , Nitric Oxide/toxicity , Polyamines/administration & dosage , Polyamines/chemistry , Propylamines/administration & dosage , Propylamines/chemistry , Species Specificity , Viscosity
18.
ACS Infect Dis ; 7(1): 23-33, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33291868

ABSTRACT

Antibiotic resistance in bacteria is a major global threat and a leading cause for healthcare-related morbidity and mortality. Resistant biofilm infections are particularly difficult to treat owing to the protective biofilm matrix, which decreases both antibiotic efficacy and clearance by the host. Novel antimicrobial agents that are capable of eradicating resistant infections are greatly needed to combat the rise of antibiotic-resistant bacteria, particularly in patients with cystic fibrosis who are frequently colonized by multidrug-resistant species. Our research group has developed nitric oxide-releasing biopolymers as alternatives to conventional antibiotics. Here, we show that nitric oxide acts as a broad-spectrum antibacterial agent while also improving the efficacy of conventional antibiotics when delivered sequentially. Alone, nitric oxide kills a broad range of bacteria in planktonic and biofilm form without engendering resistance. In combination with conventional antibiotics, nitric oxide increases bacterial susceptibility to multiple classes of antibiotics and slows the development of antibiotic resistance. We anticipate that the use of nitric oxide in combination with antibiotics may improve the outcome of patients with refractory infections, particularly those that are multidrug-resistant.


Subject(s)
Nitric Oxide , Pseudomonas Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Humans , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa
19.
ACS Infect Dis ; 6(7): 1940-1950, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32510928

ABSTRACT

Pseudomonas aeruginosa is the main contributor to the morbidity and mortality of cystic fibrosis (CF) patients. Chronic respiratory infections are rarely eradicated due to protection from CF mucus and the biofilm matrix. The composition of the biofilm matrix determines its viscoelastic properties and affects antibiotic efficacy. Nitric oxide (NO) can both disrupt the physical structure of the biofilm and eradicate interior colonies. The effects of a CF-like growth environment on P. aeruginosa biofilm susceptibility to NO were investigated using parallel plate macrorheology and particle tracking microrheology. Biofilms grown in the presence of mucins and DNA contained greater concentrations of DNA in the matrix and exhibited concomitantly larger viscoelastic moduli compared to those grown in tryptic soy broth. Greater viscoelastic moduli correlated with increased tolerance to tobramycin and colistin. Remarkably, NO-releasing cyclodextrins eradicated all biofilms at the same concentration. The capacity of NO-releasing cyclodextrins to eradicate P. aeruginosa biofilms irrespective of matrix composition suggests that NO-based therapies may be superior antibiofilm treatments compared to conventional antibiotics.


Subject(s)
Cyclodextrins , Pseudomonas aeruginosa , Biofilms , Humans , Nitric Oxide , Tobramycin
20.
Dent Mater ; 36(5): 635-644, 2020 05.
Article in English | MEDLINE | ID: mdl-32299667

ABSTRACT

OBJECTIVES: This study investigates the antibiofilm action of nitric oxide (NO)-releasing hyperbranched polymers against ex vivo multispecies periodontal biofilms. METHODS: The antibiofilm efficacy of NO-releasing hyperbranched polymers was evaluated as a function of NO-release properties, polymer concentrations, and oxygen levels in the exposure media. 16s rRNA sequencing technique was employed to evaluate the impact of NO-releasing hyperbranched polymers on the microbial composition of the biofilms. RESULTS: The addition of NO release significantly improved the antibiofilm action of the hyperbranched polymers, with NO-releasing hyperbranched polyamidoamines of largest NO payloads being more effective than hyperbranched polykanamycins. Furthermore, the NO-releasing hyperbranched polymers reduced the biofilm metabolic activity in a dose-dependent manner, killing biofilm-detached bacteria under both aerobic and anaerobic conditions, with greater antimicrobial efficacy observed under aerobic conditions. SIGNIFICANCE: These results demonstrate for the first time the potential therapeutic utility of NO-releasing hyperbranched polymers for treating multispecies dental biofilms.


Subject(s)
Nitric Oxide , Polymers , Anti-Bacterial Agents , Biofilms , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL
...