Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Toxicol Chem ; 42(12): 2651-2665, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37589405

ABSTRACT

Appalachian (eastern USA) coal surface mines fracture geologic materials, causing release of both major ions and trace elements to water via accelerated weathering. When elevated above natural background, trace elements in streams may produce adverse effects on biota via direct exposure from water and sediment and via dietary exposure in food sources. Other studies have found elevated water concentrations of multiple trace elements in Appalachia's mining-influenced streams. Except for Se, trace-element concentrations in abiotic and biotic media of Appalachian mining-influenced streams are less well known. We analyzed environmental media of headwater streams receiving alkaline waters from Appalachian coal mines for eight trace elements (Al, As, Cd, Cu, Ni, Sr, V, and Zn) and assessed the potential consequent ecological risks. Streamwater, particulate media (sediment, biofilm, leaf detritus), and benthic macroinvertebrates (primary consumers, secondary consumers, crayfish) were sampled from six mining-influenced and three reference streams during low-flow conditions in two seasons. Dissolved Cu, Ni, and Sr were higher in mining-influenced streams than in reference streams; Ni, Sr, and Zn in fine sediments and Ni in macroinvertebrates were also elevated relative to reference-stream levels in samples from mining-influenced streams. Seasonal ratios of mining-influenced stream concentrations to maximum concentrations in reference streams also demonstrated mining-influenced increases for several elements in multiple media. In most media, concentrations of several elements including Ni were correlated positively. All water-column dissolved concentrations were below protective levels, but fine-sediment concentrations of Ni approached or exceeded threshold-effect concentrations in several streams. Further study is warranted for several elements (Cd, Ni, and Zn in biofilms, and V in macroinvertebrates) that approached or exceeded previously established dietary-risk levels. Environ Toxicol Chem 2023;42:2651-2665. © 2023 SETAC.


Subject(s)
Metals, Heavy , Trace Elements , Water Pollutants, Chemical , Trace Elements/analysis , Cadmium , Water Pollutants, Chemical/analysis , Appalachian Region , Water , Coal , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis
2.
Environ Monit Assess ; 193(12): 765, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34731316

ABSTRACT

Benthic macroinvertebrate community assessments are used commonly to characterize aquatic systems and increasingly for identifying their impairment caused by myriad stressors. Yet sampling and enumeration methods vary, and research is needed to compare their abilities to detect macroinvertebrate community responses to specific water quality variables. A common assessment method, rapid bioassessment, uses subsampling procedures to identify a fixed number of individual organisms regardless of total sample abundance. In contrast, full-enumeration assessments typically allow for expanded community characterization resulting from higher numbers of identified organisms within a collected sample. Here, we compared these two sampling and enumeration methods and their abilities to detect benthic macroinvertebrate response to freshwater salinization, a common stressor of streams worldwide. We applied both methods in headwater streams along a salinity gradient within the coal-mining region of central Appalachia USA. Metrics of taxonomic richness, community composition, and trophic function differed between the methods, yet most metrics exhibiting significant response to SC for full-enumeration samples also did for rapid bioassessment samples. However, full-enumeration yielded taxonomic-based metrics consistently more responsive to the salinization gradient. Full-enumeration assessments may potentially provide more complete characterization of macroinvertebrate communities and their response to increased salinization, whereas the more cost-effective and widely employed rapid bioassessment method can detect community alterations along the full salinity gradient. These findings can inform decisions regarding such tradeoffs for assessments of freshwater salinization in headwater streams and highlight the need for similar research of sampling and enumeration methodology in other aquatic systems and for other stressors.


Subject(s)
Invertebrates , Rivers , Animals , Ecosystem , Environmental Monitoring , Salinity , Water Quality
3.
Sci Total Environ ; 717: 137216, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32062238

ABSTRACT

Elevated dissolved major ions (salinization) from surface coal mining are a common impact to central Appalachian headwater streams. Salinization is associated with alterations of benthic macroinvertebrate communities, as many organisms are adapted to the naturally dilute streams of the region. These geochemical and biological alterations have been observed in streams decades after mining, but it remains unclear whether and at what rate water quality and aquatic biota recover after mining. To address this issue, we analyzed temporal trends in specific conductance (SC), ion matrix ratios, and benthic macroinvertebrate communities over an eight-year period in 23 headwater streams, including 18 salinized by surface coal mining. We found strong, negative correlations between SC and diversity of benthic macroinvertebrate communities. Temporal trend analysis demonstrated limited recovery of water chemistry to natural background conditions. Five of the 18 mining-influenced streams exhibited declining SC; however, annual rates of decline in these streams ranged from 1.9% to 3.7% of mean annual SC, suggesting long time periods will be required to reach established benchmark values (ca. 25 years) or values observed in our five reference study streams (ca. 40 years). Similarly, there was limited evidence for recovery of macroinvertebrate community metrics, even in the few mining-influenced streams with decreasing SC. These findings indicate that salinization and its biological effects persist, likely for decades, in central Appalachian headwater streams. Our work also highlights the value of long-term monitoring data for assessing recovery potential of salinized freshwaters, as well as the need for improved understanding of water quality and biological recovery processes and time frames.


Subject(s)
Water Quality , Animals , Appalachian Region , Biota , Coal Mining , Fresh Water , Invertebrates , Water Pollutants, Chemical
4.
Environ Toxicol Chem ; 39(3): 692-704, 2020 03.
Article in English | MEDLINE | ID: mdl-31900941

ABSTRACT

Toxic effects of selenium (Se) contamination in freshwaters have been well documented. However, study of Se contamination has focused on lentic and larger order lotic systems, whereas headwater streams have received little scrutiny. In central Appalachia, surface coal mining is a common Se source to headwater streams, thus providing a useful system to investigate Se bioaccumulation in headwater food chains and possible longitudinal patterns in Se concentrations. Toward that end, we assessed Se bioaccumulation in 2 reference and 4 mining-influenced headwater streams. At each stream, we sampled ecosystem media, including streamwater, particulate matter (sediment, biofilm, leaf detritus), benthic macroinvertebrates, salamanders, and fish, every 400 m along 1.2- and 1.6-km reaches. We compared media Se concentrations within and among streams and evaluated longitudinal trends in media Se concentrations. Selenium concentrations in sampled media were higher in mining-influenced streams compared with reference streams. We found the highest Se concentrations in benthic macroinvertebrates; however, salamanders and fish bioaccumulated Se to potentially harmful levels in mining-influenced streams. Only one stream demonstrated dilution of streamwater Se with distance downstream, and few longitudinal patterns in Se bioaccumulation occurred along our study reaches. Collectively, our results provide a field-based assessment of Se bioaccumulation in headwater food chains, from streamwater to fish, and highlight the need for future assessments of Se effects in headwater streams and receiving downstream waters. Environ Toxicol Chem 2020;39:692-704. © 2020 SETAC.


Subject(s)
Bioaccumulation , Fishes/metabolism , Selenium/metabolism , Urodela/metabolism , Water Pollutants, Chemical/metabolism , Animals , Rivers , Virginia , West Virginia
5.
Environ Toxicol Chem ; 37(10): 2714-2726, 2018 10.
Article in English | MEDLINE | ID: mdl-30079541

ABSTRACT

Coal mining can cause selenium (Se) contamination in US Appalachian streams, but linkages between water-column Se concentrations and Se bioaccumulation within Appalachian headwater streams have rarely been quantified. Using elevated specific conductance (SC) in stream water as an indicator of mining influence, we evaluated relationships between SC and Se concentrations in macroinvertebrates and examined dynamics of Se bioaccumulation in headwater streams. Twenty-three Appalachian streams were categorized into 3 stream types based on SC measurements: 1) reference streams with no coal-mining history; 2) mining-influenced, high-SC streams; and 3) mining-influenced, low-SC streams. Selenium concentrations in macroinvertebrates exhibited strong positive associations with both SC and dissolved Se concentrations in stream water. At 3 streams of each type, we further collected water, particulate matter (sediment, biofilm, leaf detritus), and macroinvertebrates and analyzed them for Se during 2 seasons. Enrichment, trophic transfer, and bioaccumulation factors were calculated and compared among stream types. Particulate matter and macroinvertebrates in mining-influenced streams accumulated high Se concentrations relative to reference streams. Concentrations were found at levels indicating Se to be a potential environmental stressor to aquatic life. Most Se enrichment, trophic transfer, and bioaccumulation factors were independent of season. Enrichment factors for biofilm and sediments and bioaccumulation factors for macroinvertebrate predators varied negatively with water-column Se. Our results increase scientific understanding of Se bioaccumulation processes in Appalachian headwater streams. Environ Toxicol Chem 2018;37:2714-2726. © 2018 SETAC.


Subject(s)
Coal Mining , Rivers/chemistry , Selenium/analysis , Appalachian Region , Seasons , Water Pollutants, Chemical/analysis
6.
Water Res ; 133: 8-18, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29353698

ABSTRACT

Salinization of freshwaters by human activities is of growing concern globally. Consequences of salt pollution include adverse effects to aquatic biodiversity, ecosystem function, human health, and ecosystem services. In headwater streams of the temperate forests of eastern USA, elevated specific conductance (SC), a surrogate measurement for the major dissolved ions composing salinity, has been linked to decreased diversity of aquatic insects. However, such linkages have typically been based on limited numbers of SC measurements that do not quantify intra-annual variation. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. Toward that end, high-frequency SC data were collected within the central Appalachian coalfield over 4 years at 25 forested headwater streams spanning a gradient of salinity. A sinusoidal periodic function was used to model the annual cycle of SC, averaged across years and streams. The resultant model revealed that, on average, salinity deviated approximately ±20% from annual mean levels across all years and streams, with minimum SC occurring in late winter and peak SC occurring in late summer. The pattern was evident in headwater streams influenced by surface coal mining, unmined headwater reference streams with low salinity, and larger-order salinized rivers draining the study area. The pattern was strongly responsive to varying seasonal dilution as driven by catchment evapotranspiration, an effect that was amplified slightly in unmined catchments with greater relative forest cover. Evaluation of alternative sampling intervals indicated that discrete sampling can approximate the model performance afforded by high-frequency data but model error increases rapidly as discrete sampling intervals exceed 30 days. This study demonstrates that intra-annual variation of salinity in temperate forested headwater streams of Appalachia USA follows a natural seasonal pattern, driven by interactive influences on water quantity and quality of climate, geology, and terrestrial vegetation. Because climatic and vegetation dynamics vary annually in a seasonal, cyclic manner, a periodic function can be used to fit a sinusoidal model to the salinity pattern. The model framework used here is broadly applicable in systems with streamflow-dependent chronic salinity stress.


Subject(s)
Forests , Human Activities , Rivers , Saline Waters , Kentucky , Models, Theoretical , Salinity , Seasons , Virginia , West Virginia
7.
Biogeochemistry ; 142: 247-264, 2018.
Article in English | MEDLINE | ID: mdl-36090189

ABSTRACT

We constructed a seasonal nitrogen (N) budget for the year 2008 in the Calapooia River Watershed (CRW), an agriculturally dominated tributary of the Willamette River (Oregon, U.S.) under Mediterranean climate. Synthetic fertilizer application to agricultural land (dominated by grass seed crops) was the source of 90% of total N input to the CRW. Over 70% of the stream N export occurred during the wet winter, the primary time of fertilization and precipitation, and the lowest export occurred in the dry summer. Averaging across all 58 tributary subwatersheds, 19% of annual N inputs were exported by streams, and 41% by crop harvest. Regression analysis of seasonal stream export showed that winter fertilization was associated with 60% of the spatial variation in winter stream export, and this fertilizer continued to affect N export in later seasons. Annual N inputs were highly correlated with crop harvest N (r2=0.98), however, seasonal dynamics in N inputs and losses produced relatively low overall nutrient use efficiency (41%), suggesting that hydrologic factors may constrain improvements in nutrient management. The peak stream N export during fall and early winter creates challenges to reducing N losses to groundwater and surface waters. Construction of a seasonal N budget illustrated that the period of greatest N loss is disconnected from the period of greatest crop N uptake. Management practices that serve to reduce the N remaining in the system at the end of the growing season and prior to the fall and winter rains should be explored to reduce stream N export.

8.
Environ Monit Assess ; 186(2): 873-87, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24046242

ABSTRACT

Research on relationships between dissolved nutrients and land-use at the watershed scale is a high priority for protecting surface water quality. We measured dissolved nitrogen (DN) and ortho-phosphorus (P) along 130 km of the Calapooia River (Oregon, USA) and 44 of its sub-basins for 3 years to test for associations with land-use. Nutrient concentrations were analyzed for spatial and seasonal patterns and for relationships with land-use and stream discharge. Ortho-P and DN were higher in lower-elevation sub-basins dominated by poorly drained soils and agricultural production compared with higher-elevation sub-basins dominated by well-drained soils and forests. Eight lower basins had at least one sample period with nitrate-N > 10 mg L(-1). The Calapooia River had lower concentrations of dissolved nutrients compared with lower sub-basins, often by an order of magnitude. Dissolved organic N represented a greater proportion of DN in the upper forested sub-basins. Seasonal nutrient concentrations had strong positive correlations to the percent of a sub-basin that was managed for agriculture in all seasons (p values ≤ 0.019) except summer. Results suggest that agricultural lands are contributing to stream nutrient concentrations. However, poorly drained soils in agricultural areas may also contribute to the strong relationships that we found between dissolved nutrients and agriculture.


Subject(s)
Environmental Monitoring , Nitrogen/analysis , Phosphorus/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Agriculture , Oregon , Spatio-Temporal Analysis , Water Pollution, Chemical/statistics & numerical data , Water Supply
9.
J Environ Qual ; 38(4): 1473-82, 2009.
Article in English | MEDLINE | ID: mdl-19465723

ABSTRACT

Managing non-point-source pollution of water requires knowledge of land use/land cover (LULC) influences at altering watershed scales. To gain improved understanding of relationships among LULC, soil drainage, and dissolved nitrate-N dynamics within the Calapooia River Basin in western Oregon, we selected 44 watersheds ranging in size between 3 and 33 km(2) for monthly synoptic sampling of surface water quality between October 2003 and September 2004. Seasonal associations were examined between dissolved nitrate-N and proportion of woody vegetation or poorly drained soils at differing scales (10, 20, 30, 60, 90, 150, 300 m, and entire watershed), which we defined as influence zones (IZs), surrounding stream networks. Correlations between nitrate-N and proportion woody vegetation or poorly drained soil at each IZ were analyzed for differences using the Hotelling-Williams test. We observed negative correlations (r = -0.81 to -0.94) between nitrate-N and proportion of woody vegetation during winter and spring. Poorly drained soils had positive correlations (r = 0.63-0.87) with nitrate-N. Altering the scale of analysis significantly changed correlations between nitrate-N and woody vegetation, with IZs <150 m being stronger than the watershed scale during winter. However, absolute differences in correlation values were small, indicating minimal ecological consequence for significant differences among scales. In contrast, nitrate-N correlations with poorly drained soil were stronger at the watershed scale than the 10- through 90-m IZs during winter and spring, and absolute differences were sufficient to suggest that scale is ecologically important when determining associations between dissolved nitrate-N and poorly drained soils.


Subject(s)
Nitrates/analysis , Nitrogen/analysis , Soil , Conservation of Natural Resources
10.
J Environ Qual ; 35(3): 837-48, 2006.
Article in English | MEDLINE | ID: mdl-16585627

ABSTRACT

Forestland application of poultry manure offers an alternative to the conventional practice of pastureland application. Before such a practice is considered viable, however, it must be demonstrated that the forest ecosystem is capable of absorbing the nutrients contained in poultry manure, especially nitrogen (N) and phosphorus (P). From the forestry perspective, it must also be demonstrated that tree growth is not diminished. We investigated these questions using loblolly pine (Pinus taeda L.) stands growing in central Mississippi in an area of high poultry production. Stockpiled broiler litter was applied to newly thinned, 8-yr-old stands at 0, 4.6, and 18.6 dry Mg ha-1, supplying 0, 200, and 800 kg N ha-1 and 0, 92, and 370 kg P ha-1, respectively. Levels of nitrate in soil water, monitored at a 50-cm depth with porous cup tension lysimeters, exceeded 10 mg N L-1 during the first two years after application in the 18.6 Mg ha-1 rate but only on two occasions in the first year for the lower rate of application. Phosphate was largely absent from lysimeter water in all treatments. Other macronutrients (K, Ca, Mg, S) were elevated in lysimeter water in proportion to litter application rates. Soil extractable nitrate showed similar trends to lysimeter water, with substantial elevation during the first year following application for the 18.6 Mg ha-1 rate. Mehlich III-extractable phosphate peaked in excess of 100 microg P g-1 soil during the third year of the study for the 18.6 Mg ha-1 rate. The 4.6 Mg ha-1 rate did not affect extractable soil P. Tree growth was increased by the poultry litter. Total stem cross-sectional area, or basal area, was approximately 20% greater after 2 yr for both rates of litter application. Overall, the nutrients supplied by the 4.6 Mg ha-1 rate were contained by the pine forest and resulted in favorable increases in tree growth. The higher rate, by contrast, did pose some risk to water quality through the mobilization of nitrate. These results show that, under the conditions of this study, application of poultry litter at moderate rates of approximately 5 Mg ha-1 to young stands of loblolly pine offers an alternative disposal option with minimal impacts to water quality and potential increases in tree growth.


Subject(s)
Manure , Pinus/growth & development , Poultry , Animals , Nitrogen/metabolism , Phosphorus/metabolism , Pinus/metabolism , Plant Leaves/metabolism , Soil/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...