Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36431761

ABSTRACT

The present work concerns the intermetallic compound (IMC) existing in the Ag-Sn system and its potential use in electronics as attachment materials allowing the adhesion of the chip to the substrate forming the power module. First, we present the synthesis protocol in polyol medium of a compound with the chemical formula Ag5Sn0.9 belonging to the solid solution of composition located between 9 and 16 at.% Sn, known as solid solution ζ (or ζ-Ag4Sn). This phase corresponds to the peritectic invariant point at 724 °C. Differential thermal analysis and X-ray dispersive analysis confirm the single-phased (monocrystalline) nature of the Ag5Sn0.9 powder issued after synthesis. Scanning electron microscopy shows that Ag5Sn0.9 particles are spherical, and range in submicronic size of around 0.18 µm. X-ray diffraction analysis reveals that the ζ phase mostly exists under the two allotropic varieties (orthorhombic symmetry and hexagonal symmetry) with however a slight excess of the hexagonal variety (60% for the hexagonal variety and 40% for the orthorhombic variety). The lattice parameters resulting from this study for the two allotropic varieties are in good agreement with the Hume-Rothery rules.

2.
Materials (Basel) ; 13(6)2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32187993

ABSTRACT

We optimize the elaboration of very thin film of poly(vinylidene fluoride) (PVDF) polymer presenting a well-controlled thickness, roughness, and nano-inclusions amount. We focused our effort on the spin coating elaboration technique which is easy to transfer to an industrial process. We show that it is possible to obtain continuous and smooth thin films with mean thicknesses of 90 nm by properly adjusting the concentration and the viscosity of the PVDF solution as well as the spin rate and the substrate temperature of the elaboration process. The electro-active phase content versus the magnetic and structural properties of the composite films is reported and fully discussed. Last but not least, micro-patterning optical lithography combined with plasma etching has been used to obtain well-defined one-dimensional micro-stripes as well as squared-rings, demonstrating the easy-to-transfer silicon technology to polymer-based devices.

3.
Nanomaterials (Basel) ; 10(2)2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32075285

ABSTRACT

Cobalt nano-rods with the hexagonal close-packed (hcp) structure were prepared by reduction of the long-chain carboxylate Co (II) precursor in polyol. The application of an external magnetic field (µ0H = 1.25 T) during the nucleation and growth steps resulted in a noticeable modification of the mean aspect ratio (length/diameter) of the particles. The particle morphology was also modified as the nano-rods did not exhibit conical heads at their extremities anymore, which are observed for particles prepared without application of an external magnetic field. Besides, the stacking faults density along the c axis of the hcp structure in the cobalt nano-rods has been found to decrease with the increase in the applied magnetic field. The coercive field of randomly oriented nano-rods increased with the aspect ratio, showing the highest value (i.e., 5.8 kOe at 300 K) for the cobalt nano-rods obtained under the highest applied magnetic field. For partially oriented Co nano-rods in toluene solution, the magnetic properties were significantly enhanced with a coercive field of 7.2 kOe at 140 K, while the magnetization saturation reached 92% of the bulk. The MR/MS value was about 0.8, indicating a good orientation of the anisotropic particles relative to each other, making them suitable for the preparation of permanent magnets via a bottom-up approach.

4.
Ultrasonics ; 63: 23-30, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26117145

ABSTRACT

Lead zirconate titanate (PZT) ceramics are the dominant piezoelectric elements for non-destructive evaluation (NDE) and ultrasonic transducers devices. However, the presence of lead content may impose the scientific community to develop lead-free ceramics, concerning human health and environmental safety. During the past ten years, many contributions have highlighted the potential properties of complex compositions like LiNbO3, LiTaO3 and LiSbO3 in the lead-free (K0.5Na0.5)NbO3 KNN system. In this context, for the first time, the practical applications and the effectiveness of simply undoped (K0.5Na0.5)NbO3 (KNN) ceramics are investigated. KNN powder is prepared by conventional solid state mixed oxide route. Ceramics of this material are prepared using conventional sintering (CS) and spark plasma sintering (SPS). Thickness coupling factor kt of 44-46%, planar coupling factor kp of 29-45%, relative permittivity at constant strain ε33,r(S) of 125-243 and acoustic impedance Z of 23-30 MRay are obtained for these two kinds of undoped KNN ceramics. Both ceramics are used to build single-element ultrasonic transducers. Relative bandwidth of 49-78% and insertion loss of -27 and -51dB are obtained for SPS and CS transducers, respectively. These results are suitable for use in non-destructive evaluation. The effectiveness of undoped KNN is evaluated using the KLM model, and compared to standard PZT based probe. Finally, chemical aging test of undoped KNN has demonstrated its stability in water.

5.
PLoS One ; 7(11): e50326, 2012.
Article in English | MEDLINE | ID: mdl-23226262

ABSTRACT

BACKGROUND: This study deals with the anchorage of polyelectrolyte films onto titanium surfaces via a cathecol-based linker for biomedical applications. METHODOLOGY: The following study uses a molecule functionalized with a catechol and a carboxylic acid: 3-(3,4-dihydroxyphenyl)propanoic acid. This molecule is anchored to the TiO(2) substrate via the catechol while the carboxylic acid reacts with polymers bearing amine groups. By providing a film anchorage of chemisorption type, it makes possible to deposit polyelectrolytes on the surface of titanium. PRINCIPAL FINDINGS: Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), contact angle and atomic force microscopy (AFM) measurements show that the different steps of grafting have been successfully performed. CONCLUSIONS: This method based on catechol anchorage of polyelectrolytes open a window towards large possibilities of clinical applications.


Subject(s)
Catechols/chemistry , Coated Materials, Biocompatible/chemical synthesis , Electrolytes/chemistry , Phenylpropionates/chemistry , Polymers/chemistry , Titanium/chemistry , Microscopy, Atomic Force , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...