Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Physiol B ; 187(4): 625-637, 2017 May.
Article in English | MEDLINE | ID: mdl-28161790

ABSTRACT

Energy is limited and must be allocated among competing life-history traits. Reproduction is considered one of the most energetically demanding life-history stages. Therefore, the amount of energy an individual invests in reproduction might carry fitness costs through reduced energy allocation to other activities such as health maintenance. We investigated whether reproduction impacts health in the seasonally breeding African striped mouse (Rhabdomys pumilio). We measured health in individuals that reproduced (breeders) and individuals that did not reproduce (their adult offspring) and tested whether: (1) breeders' health before reproduction was similar to that of their offspring (representing a baseline); (2) breeders' health deteriorated after reproduction; (3) breeders' health after reproduction was worse than that of their offspring. We collected blood samples from 12 breeding females and 11 breeding males both at the onset and at the end of the breeding season and from 12 adult daughters and 11 adult sons that did not reproduce at the end of the breeding season. Health was assessed using serum biochemistry analysis with VetScan Abaxis. Breeders differed considerably in their health before and after reproduction, particularly in parameters associated with digestion (lower amylase in males), metabolism (lower albumin, alkaline phosphatase, creatinine and glucose), osmoregulation (lower potassium and phosphorous in females) and immunity (higher globulin and altered alanine aminotransferase). Our results suggest that with the onset of breeding striped mice shifted their energy allocation from maintaining health to reproduction, indicating that investment into reproduction carries significant health costs.


Subject(s)
Murinae/physiology , Reproduction/physiology , Age Factors , Alanine Transaminase/blood , Amylases/blood , Animals , Blood Chemical Analysis , Female , Litter Size , Male , Seasons , South Africa
2.
J Comp Physiol B ; 187(1): 183-201, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27421847

ABSTRACT

An individual's ability to survive harsh conditions might depend on its available energy, and also on its health, which is expected to decline as conditions deteriorate. Yet, we know little about how health and energy expenditure are shaped by harsh environmental conditions in free-living vertebrates. Here, we studied how African striped mice (Rhabdomys pumilio) that survived summer droughts differed in their energy expenditure and health from non-survivors. Specifically, we tested whether: (1) survivors' and non-survivors' health and energy expenditure differed before environmental conditions declined; (2) non-survivors were in poorer health and had greater energy expenditure than survivors when conditions were harshest; (3) non-survivors' health deteriorated more than that of survivors as conditions deteriorated; and (4) survivors recovered once conditions improved. Survivors and non-survivors' health was assessed using VetsScan ABAXIS, while energy expenditure was measured as resting metabolic rate (RMR). Before conditions declined, non-survivors had lower energy stores and higher globulin levels than survivors. As conditions became harsher, survivors' and non-survivors' health deteriorated but only non-survivors showed signs of permanent pathology (increased glucose and decreased globulin). Once conditions improved, survivors' health improved but was not fully restored (increased alanine aminotransferase and decreased globulin). Furthermore, while survivors and non-survivors had similar RMR before conditions became harsh; their levels diverged considerably when conditions deteriorated, with survivors having a decreased RMR and non-survivors having an increased RMR. Our results show that an individual's health before facing an environmental challenge and the way it regulates its RMR influences its ability to maintain homeostasis when conditions become more taxing.


Subject(s)
Droughts , Energy Metabolism , Murinae/physiology , Adaptation, Physiological , Animals , Environment , Female , Male , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...