Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Asthma ; : 1-8, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38415683

ABSTRACT

BACKGROUND: Screening asthma patients for atopy facilitates management. Since 2010, the core biomarker for screening asthma subjects for atopic status has been the qualitative Phadiatop. multi-aeroallergen screen. A more quantitative macroarray, the Allergy Explorer (ALEX2), shows promise as an alternative. OBJECTIVE: The study's goal was to examine the pros and cons of the use of ALEX2 in the screening of asthma patients for atopic status. METHODS: We evaluated the atopic (IgE-sensitization) status in asthmatic Amish and Hutterite farm children using the ImmunoCAP and ALEX2 assays in Phadiatop equivocal and positive subjects. RESULTS: All 42 asthmatic children were analyzed by Phadiatop and total serum IgE. Of these, 22 had a negative Phadiatop (<0.1 kUa/L) and total IgE <100 kU/L which defined them as non-atopic and they were excluded from ALEX2 testing. Of six children with equivocal Phadiatops (0.1-0.2 kUa/L-Group 1) and three children with a negative Phadiatop but total IgE >100 kUa/L (group 3), 44% (n = 4) had detectable IgE antibody by ALEX2 to mite, tree pollen, and other allergens not detected by Phadiatop, but confirmed by allergen-specific ImmunoCAP testing. In 11 Phadiatop positive subjects (>0.2 kUa/L-group 2), all but one were positive by ALEX2. IgE antibody specific for mold and rabbit aeroallergens matched their agricultural and pet exposure history. Three children were positive for IgE antibody to allergens in the profilin, nsLTP, or PR-10 cross-reactive protein families. CONCLUSION: Judicious use of ALEX2's enhanced specificity data not provided by the Phadiatop can aid in the interpretation of sensitization patterns and planning management of atopic asthmatics, but sensitization relevance must be confirmed by the patient's clinical history.

2.
HGG Adv ; 4(4): 100233, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37663543

ABSTRACT

In this study we examined how genetic risk for asthma associates with different features of the disease and with other medical conditions and traits. Using summary statistics from two multi-ancestry genome-wide association studies of asthma, we modeled polygenic risk scores (PRSs) and validated their predictive performance in the UK Biobank. We then performed phenome-wide association studies of the asthma PRSs with 371 heritable traits in the UK Biobank. We identified 228 total significant associations across a variety of organ systems, including associations that varied by PRS model, sex, age of asthma onset, ancestry, and human leukocyte antigen region alleles. Our results highlight pervasive pleiotropy between asthma and numerous other traits and conditions and elucidate pathways that contribute to asthma and its comorbidities.


Subject(s)
Asthma , Genome-Wide Association Study , Humans , Asthma/genetics , Risk Factors , Multifactorial Inheritance/genetics , Phenomics
3.
Nat Commun ; 13(1): 6712, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344522

ABSTRACT

Asthma is a heterogeneous, complex syndrome, and identifying asthma endotypes has been challenging. We hypothesize that distinct endotypes of asthma arise in disparate genetic variation and life-time environmental exposure backgrounds, and that disease comorbidity patterns serve as a surrogate for such genetic and exposure variations. Here, we computationally discover 22 distinct comorbid disease patterns among individuals with asthma (asthma comorbidity subgroups) using diagnosis records for >151 M US residents, and re-identify 11 of the 22 subgroups in the much smaller UK Biobank. GWASs to discern asthma risk loci for individuals within each subgroup and in all subgroups combined reveal 109 independent risk loci, of which 52 are replicated in multi-ancestry meta-analysis across different ethnicity subsamples in UK Biobank, US BioVU, and BioBank Japan. Fourteen loci confer asthma risk in multiple subgroups and in all subgroups combined. Importantly, another six loci confer asthma risk in only one subgroup. The strength of association between asthma and each of 44 health-related phenotypes also varies dramatically across subgroups. This work reveals subpopulations of asthma patients distinguished by comorbidity patterns, asthma risk loci, gene expression, and health-related phenotypes, and so reveals different asthma endotypes.


Subject(s)
Asthma , Humans , Asthma/epidemiology , Asthma/genetics , Genome-Wide Association Study , Phenotype , Comorbidity , Japan/epidemiology
4.
Genome Med ; 14(1): 55, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35606880

ABSTRACT

BACKGROUND: Genome-wide association studies of asthma have revealed robust associations with variation across the human leukocyte antigen (HLA) complex with independent associations in the HLA class I and class II regions for both childhood-onset asthma (COA) and adult-onset asthma (AOA). However, the specific variants and genes contributing to risk are unknown. METHODS: We used Bayesian approaches to perform genetic fine-mapping for COA and AOA (n=9432 and 21,556, respectively; n=318,167 shared controls) in White British individuals from the UK Biobank and to perform expression quantitative trait locus (eQTL) fine-mapping in immune (lymphoblastoid cell lines, n=398; peripheral blood mononuclear cells, n=132) and airway (nasal epithelial cells, n=188) cells from ethnically diverse individuals. We also examined putatively causal protein coding variation from protein crystal structures and conducted replication studies in independent multi-ethnic cohorts from the UK Biobank (COA n=1686; AOA n=3666; controls n=56,063). RESULTS: Genetic fine-mapping revealed both shared and distinct causal variation between COA and AOA in the class I region but only distinct causal variation in the class II region. Both gene expression levels and amino acid variation contributed to risk. Our results from eQTL fine-mapping and amino acid visualization suggested that the HLA-DQA1*03:01 allele and variation associated with expression of the nonclassical HLA-DQA2 and HLA-DQB2 genes accounted entirely for the most significant association with AOA in GWAS. Our studies also suggested a potentially prominent role for HLA-C protein coding variation in the class I region in COA. We replicated putatively causal variant associations in a multi-ethnic cohort. CONCLUSIONS: We highlight roles for both gene expression and protein coding variation in asthma risk and identified putatively causal variation and genes in the HLA region. A convergence of genomic, transcriptional, and protein coding evidence implicates the HLA-DQA2 and HLA-DQB2 genes and HLA-DQA1*03:01 allele in AOA.


Subject(s)
Asthma , Genome-Wide Association Study , Adult , Amino Acids/genetics , Asthma/genetics , Bayes Theorem , Child , Coenzyme A/genetics , Genetic Predisposition to Disease , Humans , Leukocytes, Mononuclear , Polymorphism, Single Nucleotide
5.
Am J Respir Cell Mol Biol ; 67(4): 430-437, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35580164

ABSTRACT

Chromosome 17q12-q21 is the most replicated genetic locus for childhood-onset asthma. Polymorphisms in this locus containing ∼10 genes interact with a variety of environmental exposures in the home and outdoors to modify asthma risk. However, the functional basis for these associations and their linkages to the environment have remained enigmatic. Within this extended region, regulation of GSDMB (gasdermin B) expression in airway epithelial cells has emerged as the primary mechanism underlying the 17q12-q21 genome-wide association study signal. Asthma-associated SNPs influence the abundance of GSDMB transcripts as well as the functional properties of GSDMB protein in airway epithelial cells. GSDMB is a member of the gasdermin family of proteins, which regulate pyroptosis and inflammatory responses to microbial infections. The aims of this review are to synthesize recent studies on the relationship of 17q12-q21 SNPs to childhood asthma and the evidence pointing to GSDMB gene expression or protein function as the underlying mechanism and to explore the potential functions of GSDMB that may influence the risk of developing asthma during childhood.


Subject(s)
Asthma , Genome-Wide Association Study , Pore Forming Cytotoxic Proteins/genetics , Asthma/genetics , Asthma/metabolism , Genetic Loci , Genetic Predisposition to Disease , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Polymorphism, Single Nucleotide
6.
Allergy ; 77(1): 218-229, 2022 01.
Article in English | MEDLINE | ID: mdl-34022066

ABSTRACT

BACKGROUND: Genome-wide association studies (GWASs) of asthma have identified several risk alleles and loci, but most have been conducted in individuals with European-ancestry. Studies in Asians, especially children, are still lacking. We aimed to identify susceptibility loci by performing the first GWAS of asthma in Korean children with persistent asthma. METHODS: We used a discovery set of 741 children with persistent asthma as cases and 589 healthy children and 551 healthy adults as controls to perform a GWAS. We validated our GWAS findings using UK Biobank data. We then used the Genotype-Tissue Expression database to identify expression quantitative trait loci of candidate variants. Finally, we quantified proteins of genes associated with asthma. RESULTS: Variants at the 17q12-21 locus and SNPs in CYBRD1 and TNFSF15 genes were associated with persistent childhood asthma at genome-wide thresholds of significance. Four SNPs in the TNFSF15 gene were also associated with childhood-onset asthma in British white participants in the UK Biobank data. The asthma-associated rs7856856-C allele, the lead SNP, was associated with decreased TNFSF15 expression in whole blood and in arteries. Korean children with asthma had lower serum TNFSF15 levels than controls, and those with the asthma risk rs7856856-CC genotype exhibited the lowest serum TNFSF15 levels overall, especially asthmatic children. CONCLUSIONS: Our GWAS of persistent childhood asthma with allergic sensitization identified a new susceptibility gene, TNFSF15, and replicated associations at the 17q12-21 childhood-onset asthma locus. This novel association may be mediated by reduced expression of serum TNFSF15 and loss of suppression of angiogenesis.


Subject(s)
Asthma , Genome-Wide Association Study , Tumor Necrosis Factor Ligand Superfamily Member 15 , Adult , Asthma/genetics , Case-Control Studies , Child , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide , Tumor Necrosis Factor Ligand Superfamily Member 15/genetics
7.
J Pathol Clin Res ; 7(5): 459-470, 2021 09.
Article in English | MEDLINE | ID: mdl-33960723

ABSTRACT

Autopsies of patients who have died from COVID-19 have been crucial in delineating patterns of injury associated with SARS-CoV-2 infection. Despite their utility, comprehensive autopsy studies are somewhat lacking relative to the global burden of disease, and very few comprehensive studies contextualize the findings to other fatal viral infections. We developed a novel autopsy protocol in order to perform postmortem examinations on victims of COVID-19 and herein describe detailed clinical information, gross findings, and histologic features observed in the first 16 complete COVID-19 autopsies. We also critically evaluated the role of ancillary studies used to establish a diagnosis of COVID-19 at autopsy, including immunohistochemistry (IHC), in situ hybridization (ISH), and electron microscopy (EM). IHC and ISH targeting SARS-CoV-2 were comparable in terms of the location and number of infected cells in lung tissue; however, nonspecific staining of bacteria was seen occasionally with IHC. EM was unrevealing in blindly sampled tissues. We then compared the clinical and histologic features present in this series to six archival cases of fatal seasonal influenza and six archival cases of pandemic influenza from the fourth wave of the 'Spanish Flu' in the winter of 1920. In addition to routine histology, the inflammatory infiltrates in the lungs of COVID-19 and seasonal influenza victims were compared using quantitative IHC. Our results demonstrate that the clinical and histologic features of COVID-19 are similar to those seen in fatal cases of influenza, and the two diseases tend to overlap histologically. There was no significant difference in the composition of the inflammatory infiltrate in COVID-19 and influenza at sites of acute lung injury at the time of autopsy. Our study underscores the relatively nonspecific clinical features and pathologic changes shared between severe cases of COVID-19 and influenza, while also providing important caveats to ancillary methods of viral detection.


Subject(s)
COVID-19/pathology , Influenza, Human/pathology , Pandemics , SARS-CoV-2/physiology , Aged , Autopsy , COVID-19/diagnosis , COVID-19/virology , Female , Humans , Immunohistochemistry , In Situ Hybridization , Influenza, Human/diagnosis , Influenza, Human/virology , Lung/pathology , Lung/virology , Male , Seasons
9.
bioRxiv ; 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33469586

ABSTRACT

Acute respiratory distress syndrome (ARDS) occurred in ~12% of hospitalized COVID-19 patients in a recent New York City cohort. Pulmonary endothelial dysfunction, characterized by increased expression of inflammatory genes and increased monolayer permeability, is a major component of ARDS. Vascular leak results in parenchymal accumulation of leukocytes, protein, and extravascular water, leading to pulmonary edema, ischemia, and activation of coagulation associated with COVID-19. Endothelial inflammation further contributes to uncontrolled cytokine storm in ARDS. We have recently demonstrated that Kruppel-like factor 2 (KLF2), a transcription factor which promotes endothelial quiescence and monolayer integrity, is significantly reduced in experimental models of ARDS. Lung inflammation and high-tidal volume ventilation result in reduced KLF2, leading to pulmonary endothelial dysfunction and acute lung injury. Mechanistically, we found that KLF2 is a potent transcriptional activator of Rap guanine nucleotide exchange factor 3 (RAPGEF3) which orchestrates and maintains vascular integrity. Moreover, KLF2 regulates multiple genome-wide association study (GWAS)-implicated ARDS genes. Whether lung KLF2 is regulated by SARS-CoV-2 infection is unknown. Here we report that endothelial KLF2 is significantly reduced in human lung autopsies from COVID-19 patients, which supports that ARDS due to SARS-CoV-2 is a vascular phenotype possibly attributed to KLF2 down-regulation. We provide additional data demonstrating that KLF2 is down-regulated in SARS-CoV infection in mice.

10.
Chest ; 157(3): 516-528, 2020 03.
Article in English | MEDLINE | ID: mdl-31678077

ABSTRACT

This review focuses on recent clinical and translational discoveries in severe and uncontrolled asthma that now enable phenotyping and personalized therapies in these patients. Although asthma is common in both children and adults and typically responds to standard therapies, a subset of individuals with asthma experience severe and/or persistent symptoms despite appropriate therapies. Airflow obstruction leading to frequent symptoms requiring higher levels of controller therapy is the cardinal feature of severe asthma, but the underlying molecular mechanisms, or endotypes, are diverse and variable between individuals. Two major risk factors that contribute to severe asthma are genetics and environmental exposures that modulate immune responses, and although these often interact in complex manners that are not fully understood, certain endotypes converge in severe asthma. A number of studies have evaluated various features of patients with severe asthma and classified patients into phenotypes with clinical relevance. This phenotyping is now incorporated into clinical practice and can be used to guide advanced biological therapies that target specific molecules and inflammatory pathways that contribute to asthma pathogenesis.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/therapy , Biological Products/therapeutic use , Bronchial Thermoplasty , Precision Medicine , Asthma/classification , Asthma/diagnosis , Asthma/physiopathology , Environmental Exposure , Genetic Predisposition to Disease , Humans , Phenotype , Risk Factors , Severity of Illness Index
11.
Commun Biol ; 2: 411, 2019.
Article in English | MEDLINE | ID: mdl-31754641

ABSTRACT

Antigen-specific memory T cells persist for years after exposure to a pathogen and provide effective recall responses. Many memory T cell subsets have been identified and differ in abundance throughout tissues. This study focused on CD4 and CD8 memory T cells from paired human lung and lung draining lymph node (LDLN) samples and identified substantial differences in the transcriptional landscape of these subsets, including higher expression of an array of innate immune receptors in lung T cells which were further validated by flow cytometry. Using T cell receptor analysis, we determined the clonal overlap between memory T cell subsets within the lung and within the LDLN, and this was greater than the clonal overlap observed between memory T cell subsets compared across tissues. Our results suggest that lung and LDLN memory T cells originate from different precursor pools, recognize distinct antigens and likely have separate roles in immune responses.


Subject(s)
Genes, T-Cell Receptor , Immunologic Memory , Lung/immunology , Lymph Nodes/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transcription, Genetic , Biomarkers , Cellular Reprogramming/genetics , Gene Expression Profiling , Gene Ontology , Humans , Immunophenotyping , Reproducibility of Results , V(D)J Recombination
12.
J Allergy Clin Immunol ; 144(6): 1495-1506, 2019 12.
Article in English | MEDLINE | ID: mdl-31677964

ABSTRACT

This review focuses on genome-wide association studies (GWASs) of asthma and allergic diseases published between January 1, 2018, and June 30, 2019. During this time period, there were 38 GWASs reported in 19 articles, including the largest performed to date for many of these conditions. Overall, we learned that childhood-onset asthma is associated with the most independent loci compared with other defined groups of asthma and allergic disease cases; adult-onset asthma and moderate-to-severe asthma are associated with fewer genes, which are largely a subset of those associated with childhood-onset asthma. There is significant genetic overlap between asthma and allergic diseases, particularly with respect to childhood-onset asthma, which involves genes that reflect the importance of barrier function biology, and to HLA region genes, which are the most frequently associated genes overall in both groups of diseases. Although the largest GWASs in African American and Latino/Hispanic populations were reported during this period, they are still significantly underpowered compared with studies reported in populations of European ancestry, highlighting the need for larger studies, particularly in patients with childhood-onset asthma and allergic diseases, in these important populations that carry the greatest burden of disease.


Subject(s)
Asthma/genetics , Asthma/immunology , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , HLA Antigens , Black or African American , Age of Onset , Asthma/ethnology , Asthma/pathology , HLA Antigens/genetics , HLA Antigens/immunology , Hispanic or Latino , Humans
14.
Lancet Respir Med ; 7(6): 509-522, 2019 06.
Article in English | MEDLINE | ID: mdl-31036433

ABSTRACT

BACKGROUND: Childhood-onset and adult-onset asthma differ with respect to severity and comorbidities. Whether they also differ with respect to genetic risk factors has not been previously investigated in large samples. The goals of this study were to identify shared and distinct genetic risk loci for childhood-onset and adult-onset asthma, and to identify the genes that might mediate the effects of associated variation. METHODS: We did genome-wide and transcriptome-wide studies, using data from the UK Biobank, in individuals with asthma, including adults with childhood-onset asthma (onset before 12 years of age), adults with adult-onset asthma (onset between 26 and 65 years of age), and adults without asthma (controls; aged older than 38 years). We did genome-wide association studies (GWAS) for childhood-onset asthma and adult-onset asthma each compared with shared controls, and for age of asthma onset in all asthma cases, with a genome-wide significance threshold of p<5 × 10-8. Enrichment studies determined the tissues in which genes at GWAS loci were most highly expressed, and PrediXcan, a transcriptome-wide gene-based test, was used to identify candidate risk genes. FINDINGS: Of 376 358 British white individuals from the UK Biobank, we included 37 846 with self-reports of doctor-diagnosed asthma: 9433 adults with childhood-onset asthma; 21 564 adults with adult-onset asthma; and an additional 6849 young adults with asthma with onset between 12 and 25 years of age. For the first and second GWAS analyses, 318 237 individuals older than 38 years without asthma were used as controls. We detected 61 independent asthma loci: 23 were childhood-onset specific, one was adult-onset specific, and 37 were shared. 19 loci were associated with age of asthma onset. The most significant asthma-associated locus was at 17q12 (odds ratio 1·406, 95% CI 1·365-1·448; p=1·45 × 10-111) in the childhood-onset GWAS. Genes at the childhood onset-specific loci were most highly expressed in skin, blood, and small intestine; genes at the adult onset-specific loci were most highly expressed in lung, blood, small intestine, and spleen. PrediXcan identified 113 unique candidate genes at 22 of the 61 GWAS loci. Single-nucleotide polymorphism-based heritability estimates were more than three times larger for childhood-onset asthma (0·327) than for adult-onset disease (0·098). The onset of disease in childhood was associated with additional genes with relatively large effect sizes, with the largest odds ratio observed at the FLG locus at 1q21.3 (1·970, 95% CI 1·823-2·129). INTERPRETATION: Genetic risk factors for adult-onset asthma are largely a subset of the genetic risk for childhood-onset asthma but with overall smaller effects, suggesting a greater role for non-genetic risk factors in adult-onset asthma. Combined with gene expression and tissue enrichment patterns, we suggest that the establishment of disease in children is driven more by dysregulated allergy and epithelial barrier function genes, whereas the cause of adult-onset asthma is more lung-centred and environmentally determined, but with immune-mediated mechanisms driving disease progression in both children and adults. FUNDING: US National Institutes of Health.


Subject(s)
Age of Onset , Asthma/genetics , Genetic Predisposition to Disease/genetics , Adult , Aged , Case-Control Studies , Child , Female , Filaggrin Proteins , Genetic Loci , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Factors , Transcriptome , White People/genetics
16.
Nat Genet ; 50(8): 1072-1080, 2018 08.
Article in English | MEDLINE | ID: mdl-30013184

ABSTRACT

Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis.


Subject(s)
Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Genome, Human/genetics , HLA Antigens/genetics , Rhinitis, Allergic/genetics , Allergens/genetics , Case-Control Studies , Genetic Variation/genetics , Genome-Wide Association Study/methods , Humans , Phenotype , Risk
17.
J Allergy Clin Immunol ; 142(3): 749-764.e3, 2018 09.
Article in English | MEDLINE | ID: mdl-29307657

ABSTRACT

Chromosome 17q12-21 remains the most highly replicated and significant asthma locus. Genotypes in the core region defined by the first genome-wide association study correlate with expression of 2 genes, ORM1-like 3 (ORMDL3) and gasdermin B (GSDMB), making these prime candidate asthma genes, although recent studies have implicated gasdermin A (GSDMA) distal to and post-GPI attachment to proteins 3 (PGAP3) proximal to the core region as independent loci. We review 10 years of studies on the 17q12-21 locus and suggest that genotype-specific risks for asthma at the proximal and distal loci are not specific to early-onset asthma and mediated by PGAP3, ORMDL3, and/or GSDMA expression. We propose that the weak and inconsistent associations of 17q single nucleotide polymorphisms with asthma in African Americans is due to the high frequency of some 17q alleles, the breakdown of linkage disequilibrium on African-derived chromosomes, and possibly different early-life asthma endotypes in these children. Finally, the inconsistent association between asthma and gene expression levels in blood or lung cells from older children and adults suggests that genotype effects may mediate asthma risk or protection during critical developmental windows and/or in response to relevant exposures in early life. Thus studies of young children and ethnically diverse populations are required to fully understand the relationship between genotype and asthma phenotype and the gene regulatory architecture at this locus.


Subject(s)
Asthma/genetics , Chromosomes, Human, Pair 17 , Asthma/ethnology , Chromatin , DNA Methylation , Humans , Phenotype , Quantitative Trait Loci
18.
Mol Immunol ; 51(3-4): 273-82, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22516082

ABSTRACT

We have developed a microarray to study the expression of L-chain V genes (V(L) genes) in healthy and SLE patient peripheral κ- and λ-sorted B cells. In all repertoires tested, one V(L) gene accounts for over 10% of all gene V(L) expression, consistent with positive selection acting on L-chains. While a few V(L) genes were highly expressed in all individuals, most V(L) genes were expressed at different levels. Some V(L) genes (5 out of a total of 78) were not detected. We attribute their absence from the repertoire to negative selection. Positive selection and negative selection were also found in SLE repertoires, but expression of V(L) genes was different; the differences point to less regulation of V(L) gene repertoires in SLE. Our data shows that V(L) gene expression is variable and supports a model where the L-chain repertoire is generated by both positive and negative selection on L-chains.


Subject(s)
Genes, Immunoglobulin , Immunoglobulin Light Chains/genetics , Lupus Erythematosus, Systemic/genetics , Receptors, Antigen, B-Cell/genetics , Animals , B-Lymphocytes/physiology , Base Sequence , Case-Control Studies , Gene Expression , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/immunology , Mice , Molecular Sequence Data , Phenotype
19.
Curr Opin Investig Drugs ; 10(5): 425-33, 2009 May.
Article in English | MEDLINE | ID: mdl-19431075

ABSTRACT

Angiogenesis, the formation of new blood vessels, is closely linked with both the initiation and progression of rheumatoid arthritis (RA). Rheumatoid joints contain elevated levels of proangiogenic molecules, such as VEGF, basic FGF, hypoxia-inducible factor 1 and angiopoietins. Increased angiogenesis is also associated with malignancies and proliferative retinopathies, and targeting this process therapeutically has proven beneficial in treating several of these diseases including colorectal, kidney and lung cancer. Adapting such a therapeutic strategy to the treatment of RA may prove beneficial, as data from preclinical studies have demonstrated that angiogenesis inhibitors reduce pannus formation, inflammation and joint erosion. New therapies that inhibit angiogenesis by blocking VEGFR tyrosine kinase signaling, integrin interactions, microtubule formation and endothelial cell proliferation may be applicable to the treatment of RA. There are several angiogenesis inhibitors that have been approved by the FDA or are currently being assessed in clinical trials which are safe for use in humans, although their effects on RA remain untested. This review discusses the potential of angiogenesis inhibition in the context of treating RA.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Arthritis, Rheumatoid/drug therapy , Inflammation Mediators/therapeutic use , Angiogenesis Inhibitors/chemistry , Animals , Arthritis, Rheumatoid/immunology , Chronic Disease , Humans , Inflammation Mediators/chemistry , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/immunology
20.
J Pharmacol Exp Ther ; 329(2): 615-24, 2009 May.
Article in English | MEDLINE | ID: mdl-19218530

ABSTRACT

Pannus formation, in both rheumatoid arthritis (RA) and collagen-induced arthritis (CIA), is angiogenesis-dependent. PPI-2458 [(1R)-1-carbamoyl-2-methyl]-carbamic acid-(3R,3S,5S, 6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)oxiranyl]-1-oxaspiro(2*5)oct-6-yl ester], a new fumagillin derivative known to inhibit methionine aminopeptidase 2 (MetAP-2) and endothelial proliferation at the late G(1) phase, was evaluated in CIA rats to study its potential to involute synovitis. Arthritic syngeneic LOU rats received either a vehicle control or various dosages of oral, intravenous, or subcutaneous PPI-2458. Plasma samples were analyzed to determine a pharmacokinetic profile of PPI-2458, and whole blood was evaluated by flow cytometry to assess the effect on lymphocyte subsets. At 15 mg/kg i.v., 30 mg/kg s.c., or 100 mg/kg p.o., there was a significant reduction in clinical severity scores (p < 0.001) and blinded radiographic scores (p < 0.001) compared with vehicle control groups. Structural damage was virtually eliminated with PPI-2458. Continuous inhibition of MetAP-2 was needed to maintain benefits, although pannus involution could be achieved with the inhibitor when escape flares occurred. Pharmacokinetic analysis after a single p.o. dose showed a rapid T(max) value of 15 min followed by biphasic elimination (t(1/2), approximately 20 min and t(1/2), approximately 5 h) and an estimated oral bioavailability of approximately 15%. Flow cytometry revealed a dose-dependent decrease in white blood cells and lymphocytes manifested as decreases in circulating CD3+ T cells and natural killer cells. PPI-2458, however, did not seem to be immunosuppressive, as determined by delayed-type hypersensitivity or IgG antibody assays. These studies indicate that the MetAP-2 inhibitor PPI-2458 can regress established CIA and that angiogenic mechanisms might be important targets in the treatment of other pannus-mediated diseases such as RA.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Arthritis, Experimental/drug therapy , Epoxy Compounds/therapeutic use , Neovascularization, Pathologic/prevention & control , Valine/analogs & derivatives , Administration, Oral , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacokinetics , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Biological Availability , Collagen Type II , Epoxy Compounds/administration & dosage , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacokinetics , Flow Cytometry , Injections, Intravenous , Injections, Subcutaneous , Molecular Structure , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Rats , Rats, Inbred Strains , Valine/administration & dosage , Valine/chemistry , Valine/pharmacokinetics , Valine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...