Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Water Resour Assoc ; 54(2): 323-345, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30245566

ABSTRACT

Streams, riparian areas, floodplains, alluvial aquifers and downstream waters (e.g., large rivers, lakes, oceans) are interconnected by longitudinal, lateral, and vertical fluxes of water, other materials and energy. Collectively, these interconnected waters are called fluvial hydrosystems. Physical and chemical connectivity within fluvial hydrosystems is created by the transport of nonliving materials (e.g., water, sediment, nutrients, contaminants) which either do or do not chemically change (chemical and physical connections, respectively). A substantial body of evidence unequivocally demonstrates physical and chemical connectivity between streams and riparian wetlands and downstream waters. Streams and riparian wetlands are structurally connected to downstream waters through the network of continuous channels and floodplain form that make these systems physically contiguous, and the very existence of these structures provides strong geomorphologic evidence for connectivity. Functional connections between streams and riparian wetlands and their downstream waters vary geographically and over time, based on proximity, relative size, environmental setting, material disparity, and intervening units. Because of the complexity and dynamic nature of connections among fluvial hydrosystem units, a complete accounting of the physical and chemical connections and their consequences to downstream waters should aggregate over multiple years to decades.

2.
J Am Water Resour Assoc ; 54(2): 298-322, 2018.
Article in English | MEDLINE | ID: mdl-30078985

ABSTRACT

Interest in connectivity has increased in the aquatic sciences, partly because of its relevance to the Clean Water Act. This paper has two objectives: (1) provide a framework to understand hydrological, chemical, and biological connectivity, focusing on how headwater streams and wetlands connect to and contribute to rivers; and (2) review methods to quantify hydrological and chemical connectivity. Streams and wetlands affect river structure and function by altering material and biological fluxes to the river; this depends on two factors: (1) functions within streams and wetlands that affect material fluxes; and (2) connectivity (or isolation) from streams and wetlands to rivers that allows (or prevents) material transport between systems. Connectivity can be described in terms of frequency, magnitude, duration, timing, and rate of change. It results from physical characteristics of a system, e.g., climate, soils, geology, topography, and the spatial distribution of aquatic components. Biological connectivity is also affected by traits and behavior of the biota. Connectivity can be altered by human impacts, often in complex ways. Because of variability in these factors, connectivity is not constant but varies over time and space. Connectivity can be quantified with field-based methods, modeling, and remote sensing. Further studies using these methods are needed to classify and quantify connectivity of aquatic ecosystems and to understand how impacts affect connectivity.

3.
J Am Water Resour Assoc ; 54(2): 372-399, 2018.
Article in English | MEDLINE | ID: mdl-31296983

ABSTRACT

Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.

4.
Environ Evid ; 6(18): 1-13, 2017.
Article in English | MEDLINE | ID: mdl-31019679

ABSTRACT

BACKGROUND: Eutrophication of freshwater ecosystems resulting from nitrogen and phosphorus pollution is a major stressor across the globe. Despite recognition by scientists and stakeholders of the problems of nutrient pollution, rigorous synthesis of scientific evidence is still needed to inform nutrient-related management decisions, especially in streams and rivers. Nutrient stressor-response relationships are complicated by multiple interacting environmental factors, complex and indirect causal pathways involving diverse biotic assemblages and food web compartments, legacy (historic) nutrient sources such as agricultural sediments, and the naturally high spatiotemporal variabilityof lotic ecosystems. Determining nutrient levels at which ecosystems are affected is a critical first step for identifying, managing, and restoring aquatic resources impaired by eutrophication and maintaining currently unimpaired resources. The systematic review outlined in this protocol will compile and synthesize literature on the response of chlorophyll a to nutrients in streams, providing a state-of-the-science body of evidence to assess nutrient impacts to one of the most widely-used measures of eutrophication. This review will address two questions: "What is the response of chlorophyll a to total nitrogen and total phosphorus concentrations in lotic ecosystems?" and "How are these relationships affected by other factors?" METHODS: Searches for published and unpublished articles (peer-reviewed and non-peer-reviewed) will be conducted using bibliographic databases and search engines. Searches will be supplemented with bibliography searches and requests for material from the scientific and management community. Articles will be screened for relevance at the title/abstract and full text levels using pre-determined inclusion criteria; 10% (minimum 50, maximum 200) of screened papers will be examined by multiple reviewers to ensure consistent application of criteria. Study risk of bias will be evaluated using a questionnaire developed from existing frameworks and tailored to the specific study types this review will encounter. Results will be synthesized using meta-analysis of correlation coefficients, as well as narrative and tabular summaries, and will focus on the shape, direction, strength, and variability of available nutrient-chlorophyll relationships. Sensitivity analysis and meta-regression will be used to evaluate potential effects of study quality and modifying factors on nutrient-chlorophyll relationships.

SELECTION OF CITATIONS
SEARCH DETAIL
...