Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Sports Physiol Perform ; 17(2): 313-316, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34686617

ABSTRACT

AIM: To highlight energy availability status, resting metabolic rate measures, dietary protein intake, and testosterone concentration in 4 elite male track cycling athletes (mean [SD]: age: 20.8 [1.5] y, body mass: 76.3 [3.6] kg, height: 181.8 [2.9] cm). METHOD: A cross-sectional observation included measures of energy availability (energy intake minus exercise energy expenditure, divided by fat-free mass), resting metabolic rate from indirect calorimetry, dietary protein intake from food records, blood analysis to assess sex hormone status, and performance markers. RESULTS: Midrange testosterone (16.9-19.8 nmol/L), lowered resting metabolic rate ratio (0.76-0.98), varied luteinizing hormone (4-10 U/L), and suboptimal energy availability (26-41 kcal/kg fat-free mass/d, range) were observed in the male track cyclists. Protein intakes ranged from 2.0 g to 2.8 g protein/kg/d. CONCLUSION: The current cohort may have within-day energy deficiency, putting them in a catabolic state.


Subject(s)
Basal Metabolism , Dietary Proteins , Adult , Athletes , Body Composition , Cross-Sectional Studies , Energy Intake , Energy Metabolism , Humans , Male , Young Adult
2.
Front Sports Act Living ; 3: 601420, 2021.
Article in English | MEDLINE | ID: mdl-33681758

ABSTRACT

Health is a pre-requisite for optimal performance yet the parameters which govern health and performance of elite female athletes are little understood. The aim of this study was to quantify the health status of elite female athletes, and understand sociocultural factors influencing that status. The survey addressed demographic, health and athletic performance history, training load, contraceptive use, sport-specific appearance and performance pressures, and communication barriers. Three hundred and fifty-seven elite New Zealand female athletes were recruited to complete an on-line survey. Two hundred and nineteen athletes completed the survey. Oligomenorrhea/amenorrhea had been diagnosed in only 12% of athletes compared with 50% of athletes not on hormonal contraception who reported symptoms consistent with this diagnosis. Stress fractures and iron deficiency were common and associated with oligomenorrhoea/amenorrhea (P = 0.002), disordered eating (P = 0.009) or menorrhagia (P = 0.026). Athletes involved in individual sports (P = 0.047) and with higher training volumes (P < 0.001) were more likely to report a medical illness. Seventy-three percent of athletes felt pressured by their sport to alter their physical appearance to conform to gender ideals with 15% engaging in disordered eating practices. Barriers to communicating female health issues included male coaches and support staff, and lack of quality information pertaining to health. Elite female athletes may fail to reach peak performance due to specific health issues and undiagnosed pathology. Sociocultural factors influence the effectiveness of support of female's health and performance. Organizational and cultural change is required if elite female athletes are to combine optimal health with best performance.

3.
Eur J Sport Sci ; 21(11): 1567-1578, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33108971

ABSTRACT

Most of the low energy availability (LEA) research has been conducted in female populations. The occurrence of LEA in male athletes is not well known, even with an understanding of the components involved in and contributing to LEA. Cycling is a major risk factor for LEA due to inherent sports characteristics: low impact, high energy demands, and a common perception that leanness is a performance advantage. The purpose of this review is to discuss the cycling-specific studies that have documented components of RED-S. The review demonstrates male cyclists (1) experience energy deficits daily, weekly and throughout a season; (2) exhibit lower bone mineral density at the spine compared to the hip, and low bone mineral density correlating with LEA and; (3) demonstrate downregulation of the endocrine system with elevated cortisol, reduced testosterone and insulin-like growth factor 1. The complexity of LEA is further explored by the socio-psychological contribution that may impact eating behaviours, and therefore increase the risk of developing LEA. Future research directions include applying multifaceted research methods to gain a greater understanding of this syndrome and the effect of LEA on male cyclists.


Subject(s)
Athletes/psychology , Bicycling/physiology , Bicycling/psychology , Bone Density/physiology , Endocrine System/physiology , Energy Intake/physiology , Energy Metabolism/physiology , Humans , Male , Sports Nutritional Physiological Phenomena
4.
Med Sci Sports Exerc ; 44(12): 2331-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22811028

ABSTRACT

PURPOSE: Effects of resistance training and detraining on glucose and insulin responses to an oral glucose load, muscle fiber type, and muscular performance in the offspring of those with type 2 diabetes (familial insulin resistant (FIR)) were investigated. METHODS: Six FIR participants and 10 controls (C) completed 9 wk of resistance training and 9 wk of detraining. Measures of strength and power, an oral glucose tolerance test, and a muscle biopsy to determine myosin heavy chain (MHC) fiber composition were taken at baseline (T1), after training (T2), and after detraining (T3). RESULTS: Three-repetition maximum increased (P ≤ 0.001) similarly in both groups in all strength measures, e.g., leg press (FIR T1, T2: 121 ± 34 kg, 186 ± 50 kg; C T1, T2: 137 ± 42 kg, 206 ± 64 kg, respectively (means ± SD)). Wingate peak power increased (FIR T1, T2: 505 ± 137 W, 523 ± 143 W; C T1, T2: 636 ± 211 W, 672 ± 223 W, respectively; P ≤ 0.005 (means ± SD)). Training reduced insulin area under the curve more (P = 0.050) in FIR (T1, T2: 1219 ± 734 pmol·L, 837 ± 284 pmol·L, respectively (means ± SD)) than that in C (T1, T2: 647 ± 268 pmol·L, 635 ± 258 pmol·L, respectively (means ± SD)). MHC distribution did not change with training. Strength (three-repetition maximum measures) decreased with detraining (P ≤ 0.001) although Wingate power did not. Detraining increased insulin area under the curve (P = 0.018) in FIR (T2, T3: 837 ± 285 pmol·L, 1040 ± 194 pmol·L, respectively (means ± SD)) but not in C (T2, T3: 635 ± 258 pmol·L, 625 ± 213 pmol·L, respectively (means ± SD)). MHC IIX fibers increased with detraining (P = 0.026). CONCLUSION: FIR appears to have exaggerated responses to resistance training and detraining, with a greater reduction in insulin release with glucose ingestion after training and increase when training ceases. Resistance training has a significant effect on insulin responses and may reduce future risk of type 2 diabetes mellitus among FIR.


Subject(s)
Child of Impaired Parents , Diabetes Mellitus, Type 2 , Insulin Resistance/physiology , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/physiology , Resistance Training , Adult , Case-Control Studies , Exercise Test , Female , Glucose Tolerance Test , Humans , Insulin/metabolism , Insulin Secretion , Male , Muscle Fibers, Fast-Twitch/cytology , Muscle Fibers, Slow-Twitch/cytology , Muscle Strength/physiology , New Zealand , Resistance Training/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...