Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 5: 4693, 2014 08 18.
Article in English | MEDLINE | ID: mdl-25131416

ABSTRACT

Engineering domains in ferroelectric thin films is crucial for realizing technological applications including non-volatile data storage and solar energy harvesting. Size and shape of domains strongly depend on the electrical and mechanical boundary conditions. Here we report the origin of nonswitchable polarization under external bias that leads to energetically unfavourable head-to-head domain walls in as-grown epitaxial PbZr(0.2)Ti(0.8)O3 thin films. By mapping electrostatic potentials and electric fields using off-axis electron holography and electron-beam-induced current with in situ electrical biasing in a transmission electron microscope, we show that electronic band bending across film/substrate interfaces locks local polarization direction and further produces unidirectional biasing fields, inducing nonswitchable domains near the interface. Presence of oxygen vacancies near the film surface, as revealed by electron-energy loss spectroscopy, stabilizes the charged domain walls. The formation of charged domain walls and nonswitchable domains reported in this study can be an origin for imprint and retention loss in ferroelectric thin films.

2.
Proc Natl Acad Sci U S A ; 108(52): 20941-6, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22160678

ABSTRACT

It is generally accepted that electronic and magnetic phase separation is the origin of many of exotic properties of strongly correlated electron materials, such as colossal magnetoresistance (CMR), an unusually large variation in the electrical resistivity under applied magnetic field. In the simplest picture, the two competing phases are those associated with the material state on either side of the phase transition. Those phases would be paramagnetic insulator and ferromagnetic metal for the CMR effect in doped manganites. It has been speculated that a critical component of the CMR phenomenon is nanoclusters with quite different properties than either of the terminal phases during the transition. However, the role of these nanoclusters in the CMR effect remains elusive because the physical properties of the nanoclusters are hard to measure when embedded in bulk materials. Here we show the unexpected behavior of the nanoclusters in the CMR compound La(1-x)Ca(x)MnO(3) (0.4 ≤ x < 0.5) by directly correlating transmission electron microscopy observations with bulk measurements. The structurally modified nanoclusters at the CMR temperature were found to be ferromagnetic and exhibit much higher electrical conductivity than previously proposed. Only at temperatures much below the CMR transition, the nanoclusters are antiferromagnetic and insulating. These findings substantially alter the current understanding of these nanoclusters on the material's functionality and would shed light on the microscopic study on the competing spin-lattice-charge orders in strongly correlated systems.


Subject(s)
Electric Impedance , Magnetics , Manganese Compounds/chemistry , Nanostructures/chemistry , Phase Transition , Electric Conductivity , Microscopy, Electron, Transmission , Temperature
3.
ACS Nano ; 5(12): 9710-7, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22098501

ABSTRACT

As silicon-based electronics are reaching the nanosize limits of the semiconductor roadmap, carbon-based nanoelectronics has become a rapidly growing field, with great interest in tuning the properties of carbon-based materials. Chemical functionalization is a proposed route, but syntheses of graphene oxide (G-O) produce disordered, nonstoichiometric materials with poor electronic properties. We report synthesis of an ordered, stoichiometric, solid-state carbon oxide that has never been observed in nature and coexists with graphene. Formation of this material, graphene monoxide (GMO), is achieved by annealing multilayered G-O. Our results indicate that the resulting thermally reduced G-O (TRG-O) consists of a two-dimensional nanocrystalline phase segregation: unoxidized graphitic regions are separated from highly oxidized regions of GMO. GMO has a quasi-hexagonal unit cell, an unusually high 1:1 O:C ratio, and a calculated direct band gap of ∼0.9 eV.


Subject(s)
Crystallization/methods , Graphite/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Semiconductors , Electric Conductivity , Hot Temperature , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Oxidation-Reduction , Oxides/chemistry , Particle Size , Surface Properties , Vacuum
5.
Phys Rev Lett ; 92(19): 195502, 2004 May 14.
Article in English | MEDLINE | ID: mdl-15169414

ABSTRACT

Using electron holography in a transmission electron microscope, we obtained direct evidence for the reduction of negative charge at grain boundary dislocations in Ca-doped YBa2Cu3O7 (YBCO) when compared to undoped YBCO. Because of the finite width of the valence band in the superconducting CuO2 planes, the negative grain boundary charge can lead to a depletion of electron holes available for superconductivity. A significant reduction in the size of the perturbed region in the Ca-doped samples appears to be the principal mechanism for the improved interfacial superconductivity.

6.
Opt Lett ; 28(14): 1194-6, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12885018

ABSTRACT

A wide range of interferometric techniques recover phase information that is mathematically wrapped on the interval (-pi, pi). Obtaining the true unwrapped phase is a longstanding problem. We present an algorithm that solves the phase unwrapping problem, using a combination of Fourier techniques. The execution time for our algorithm is equivalent to the computation time required for performing eight fast Fourier transforms and is stable against noise and residues present in the wrapped phase. We have extended the algorithm to handle data of arbitrary size. We expect the state of the art of existing interferometric applications, including the possibility for real-time phase recovery, to benefit from our algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...