Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; 49(2): 370-377, 2021 02.
Article in English | MEDLINE | ID: mdl-32431232

ABSTRACT

Squamous metaplasia is a nonspecific adaptive response to chronic irritation in the larynx and is often diagnosed as a test item-related change in rat inhalation studies. Investigating scientists are frequently asked to assess the adversity of laryngeal squamous metaplasia and to interpret its relevance to human risk. One factor in predicting relevance to human risk is the kinetics (degree and speed) of recovery following the cessation of exposure to the test item. Most reports describing recovery from squamous metaplasia in the rat larynx discuss the more severe end of the spectrum of metaplastic change (moderate to severe) and include relatively long (6 weeks or more) recovery periods. We conducted 2 studies to evaluate the toxicity and recovery from any potential effects of 4-(Chloro-2-methylphenoxy) butyric (MCPB) acid, a herbicide, when administered by inhalation to young male Sprague Dawley rats for 3 to 4 weeks. The studies resulted in minimal to moderate laryngeal squamous metaplasia for which we describe the kinetics of recovery over 1 to 4 weeks. We found that the microscopic change epithelial alteration, which is normally considered to be a precursor in the development of squamous metaplasia, can occur as a transitional stage between squamous and normal epithelium during recovery.


Subject(s)
Carcinoma, Squamous Cell , Larynx , Animals , Kinetics , Male , Metaplasia , Rats , Rats, Sprague-Dawley
2.
J Strength Cond Res ; 35(9): 2498-2503, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-31136551

ABSTRACT

ABSTRACT: Schofield, M, Tinwala, F, Cronin, J, Hébert-Losier, K, and Uthoff, A. Multijoint musculoarticular stiffness derived from a perturbation is highly variable. J Strength Cond Res 35(9): 2498-2503, 2021-Testing musculoarticular stiffness may provide insights into multijoint elastic properties. Yet, most research has focused on quantifying stiffness, or elastic potential, at a single joint. The purpose of this study was to quantify the test-retest reliability of musculoarticular stiffness derived from the perturbation technique across the bench pull, bench press, and squat movements. Eight resistance-trained men performed bench pull, bench press, and squat repetition maximums, after which a perturbation protocol was tested over multiple days. During the 3 movements, a brief perturbation was applied to the bar. The resulting sinusoidal wave was measured by an underbench force plate and a linear position transducer attached to the bar. From the sinusoidal wave, stiffness was derived and found to be unreliable across movements and days (change in mean: -35.1 to 15.8%; coefficient of variation: 7.1-111%; intraclass correlation: -0.58 to -0.89). Squat data were removed from the analysis entirely because of the inability to consistently determine the perturbations on the force plate. Practitioners need to be aware that musculoarticular stiffness as measured using the perturbation technique on the movements performed in this study has considerable limitations in terms of reproducibility.


Subject(s)
Movement , Humans , Male , Reproducibility of Results
3.
J Sports Sci ; 38(6): 597-606, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32005085

ABSTRACT

When new protocols are developed, there is a requirement to investigate test-retest reliability of measures for valid use and interpretation of data in research and practice. Therefore, the aim of this investigation was to determine the inter-day reliability of the cable put and seated rotation assessment protocols. On three occasions, nine resistance-trained men performed cable puts and cable rotations at different loads between 6 and 42 kg on a commercially available cable cross over machine. Load stack movement was recorded using a PT5A linear position transducer from which all kinematic and kinetic variables were calculated. Reliability was excellent for peak velocity and displacement based on intraclass correlation coefficient (ICC) and coefficient of variation (CV) across the majority of loads and movements (cable put: ICC = 0.92 to 0.99, CV = 3.1% to 8.6%; cable seated rotation: ICC = 0.76 to 0.99, CV = -1.7% to 16.1%). However, kinetic variables demonstrated inadequate reliability across the majority of days, loads and movements (ICC = 0.70, CV >10%). It was concluded that peak velocity is a reliable kinematic measure to assess muscular capability from cable put and seated rotation protocols; however, kinetic measures are too variable to provide reliable outputs across testing occasions.


Subject(s)
Exercise Test/methods , Track and Field/physiology , Adult , Biomechanical Phenomena , Humans , Kinetics , Male , Muscle Strength/physiology , Reproducibility of Results , Resistance Training , Rotation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...