Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(24): e2312282, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38380859

ABSTRACT

Artificial lattices constructed from individual dopant atoms within a semiconductor crystal hold promise to provide novel materials with tailored electronic, magnetic, and optical properties. These custom-engineered lattices are anticipated to enable new, fundamental discoveries in condensed matter physics and lead to the creation of new semiconductor technologies including analog quantum simulators and universal solid-state quantum computers. This work reports precise and repeatable, substitutional incorporation of single arsenic atoms into a silicon lattice. A combination of scanning tunneling microscopy hydrogen resist lithography and a detailed statistical exploration of the chemistry of arsine on the hydrogen-terminated silicon (001) surface are employed to show that single arsenic dopants can be deterministically placed within four silicon lattice sites and incorporated with 97 ± 2% yield. These findings bring closer to the ultimate frontier in semiconductor technology: the deterministic assembly of atomically precise dopant and qubit arrays at arbitrarily large scales.

2.
Nat Commun ; 15(1): 694, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267459

ABSTRACT

Atomically precise hydrogen desorption lithography using scanning tunnelling microscopy (STM) has enabled the development of single-atom, quantum-electronic devices on a laboratory scale. Scaling up this technology to mass-produce these devices requires bridging the gap between the precision of STM and the processes used in next-generation semiconductor manufacturing. Here, we demonstrate the ability to remove hydrogen from a monohydride Si(001):H surface using extreme ultraviolet (EUV) light. We quantify the desorption characteristics using various techniques, including STM, X-ray photoelectron spectroscopy (XPS), and photoemission electron microscopy (XPEEM). Our results show that desorption is induced by secondary electrons from valence band excitations, consistent with an exactly solvable non-linear differential equation and compatible with the current 13.5 nm (~92 eV) EUV standard for photolithography; the data imply useful exposure times of order minutes for the 300 W sources characteristic of EUV infrastructure. This is an important step towards the EUV patterning of silicon surfaces without traditional resists, by offering the possibility for parallel processing in the fabrication of classical and quantum devices through deterministic doping.

3.
J Phys Chem C Nanomater Interfaces ; 127(33): 16433-16441, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37646007

ABSTRACT

We investigate the adsorption and thermal decomposition of triphenyl bismuth (TPB) on the silicon (001) surface using atomic-resolution scanning tunneling microscopy, synchrotron-based X-ray photoelectron spectroscopy, and density functional theory calculations. Our results show that the adsorption of TPB at room temperature creates both bismuth-silicon and phenyl-silicon bonds. Annealing above room temperature leads to increased chemical interactions between the phenyl groups and the silicon surface, followed by phenyl detachment and bismuth subsurface migration. The thermal decomposition of the carbon fragments leads to the formation of silicon carbide at the surface. This chemical understanding of the process allows for controlled bismuth introduction into the near surface of silicon and opens pathways for ultra-shallow doping approaches.

4.
Adv Sci (Weinh) ; 10(27): e2302101, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37469010

ABSTRACT

Two-dimensional dopant layers (δ-layers) in semiconductors provide the high-mobility electron liquids (2DELs) needed for nanoscale quantum-electronic devices. Key parameters such as carrier densities, effective masses, and confinement thicknesses for 2DELs have traditionally been extracted from quantum magnetotransport. In principle, the parameters are immediately readable from the one-electron spectral function that can be measured by angle-resolved photoemission spectroscopy (ARPES). Here, buried 2DEL δ-layers in silicon are measured with soft X-ray (SX) ARPES to obtain detailed information about their filled conduction bands and extract device-relevant properties. This study takes advantage of the larger probing depth and photon energy range of SX-ARPES relative to vacuum ultraviolet (VUV) ARPES to accurately measure the δ-layer electronic confinement. The measurements are made on ambient-exposed samples and yield extremely thin (< 1 nm) and dense (≈1014  cm-2 ) 2DELs. Critically, this method is used to show that δ-layers of arsenic exhibit better electronic confinement than δ-layers of phosphorus fabricated under identical conditions.

5.
Sci Adv ; 9(16): eadf5997, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37075116

ABSTRACT

In this work, we show the feasibility of extreme ultraviolet (EUV) patterning on an HF-treated silicon (100) surface in the absence of a photoresist. EUV lithography is the leading lithography technique in semiconductor manufacturing due to its high resolution and throughput, but future progress in resolution can be hampered because of the inherent limitations of the resists. We show that EUV photons can induce surface reactions on a partially hydrogen-terminated silicon surface and assist the growth of an oxide layer, which serves as an etch mask. This mechanism is different from the hydrogen desorption in scanning tunneling microscopy-based lithography. We achieve silicon dioxide/silicon gratings with 75-nanometer half-pitch and 31-nanometer height, demonstrating the efficacy of the method and the feasibility of patterning with EUV lithography without the use of a photoresist. Further development of the resistless EUV lithography method can be a viable approach to nanometer-scale lithography by overcoming the inherent resolution and roughness limitations of photoresist materials.

6.
Angew Chem Int Ed Engl ; 62(7): e202213982, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36484458

ABSTRACT

Germanium has emerged as an exceptionally promising material for spintronics and quantum information applications, with significant fundamental advantages over silicon. However, efforts to create atomic-scale devices using donor atoms as qubits have largely focused on phosphorus in silicon. Positioning phosphorus in silicon with atomic-scale precision requires a thermal incorporation anneal, but the low success rate for this step has been shown to be a fundamental limitation prohibiting the scale-up to large-scale devices. Here, we present a comprehensive study of arsine (AsH3 ) on the germanium (001) surface. We show that, unlike any previously studied dopant precursor on silicon or germanium, arsenic atoms fully incorporate into substitutional surface lattice sites at room temperature. Our results pave the way for the next generation of atomic-scale donor devices combining the superior electronic properties of germanium with the enhanced properties of arsine/germanium chemistry that promises scale-up to large numbers of deterministically placed qubits.

8.
Nano Lett ; 21(13): 5516-5521, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34228455

ABSTRACT

We present the discovery of a charge density wave (CDW) ground state in heavily electron-doped molybdenum disulfide (MoS2). This is the first observation of a CDW in any d2 (column 6) transition metal dichalcogenide (TMD). The band structure of MoS2 is distinct from the d0 and d1 TMDs in which CDWs have been previously observed, facilitating new insight into CDW formation. We demonstrate a metal-insulator transition at 85 K, a 25 meV gap at the Fermi level, and two distinct CDW modulations, (2√3 × 2√3) R30° and 2 × 2, attributable to Fermi surface nesting (FSN) and electron-phonon coupling (EPC), respectively. This simultaneous exhibition of FSN and EPC CDW modulations is unique among observations of CDW ground states, and we discuss this in the context of band folding. Our observations provide a route toward the resolution of controversies surrounding the origin of CDW modulations in TMDs.


Subject(s)
Electrons , Molybdenum , Disulfides
9.
J Phys Condens Matter ; 33(21)2021 May 04.
Article in English | MEDLINE | ID: mdl-33592594

ABSTRACT

The adsorption configurations of a technologically relevant model organic adsorbate on the silicon (001) surface were studied using energy scanned x-ray photoelectron diffraction (PhD). Previous work has established the existence of an interesting vertically-aligned ('flagpole') configuration, where the acetophenone attaches to Si(001) via the acetyl group carbon and oxygen atoms. Density functional theory calculations have predicted two energetically similar variants of this structure, where the phenyl ring is orientated parallel or perpendicular to the rows of silicon dimers on this reconstructed surface. However, previously published experimental measurements, including scanning tunnelling microscopy, x-ray photoelectron spectroscopy, and near-edge x-ray absorption fine structure investigations were unable to distinguish between these two configurations. Here, we apply the unique experimental capabilities of the PhD technique to this system and demonstrate that the dominant adsorption configuration has the phenyl ring parallel to the dimer rows (the end-bridge structure). This information in turn facilitates the determination of the dominant reaction pathway for acetophenone on Si(001), which has remained elusive until now. Information about subtle preferences in reaction pathways that affect the alignment and orientation of organic adsorbates such as acetophenone on technologically-relevant semiconductor surfaces such as Si(001) is critical for the fabrication of future atomically-precise atomic and molecular-scale electronic devices utilising the organic-silicon interface, and this work demonstrates the unique and complementary capabilities of PhD for providing this information.

10.
ACS Nano ; 14(3): 3316-3327, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32142256

ABSTRACT

Over the past two decades, prototype devices for future classical and quantum computing technologies have been fabricated by using scanning tunneling microscopy and hydrogen resist lithography to position phosphorus atoms in silicon with atomic-scale precision. Despite these successes, phosphine remains the only donor precursor molecule to have been demonstrated as compatible with the hydrogen resist lithography technique. The potential benefits of atomic-scale placement of alternative dopant species have, until now, remained unexplored. In this work, we demonstrate the successful fabrication of atomic-scale structures of arsenic-in-silicon. Using a scanning tunneling microscope tip, we pattern a monolayer hydrogen mask to selectively place arsenic atoms on the Si(001) surface using arsine as the precursor molecule. We fully elucidate the surface chemistry and reaction pathways of arsine on Si(001), revealing significant differences to phosphine. We explain how these differences result in enhanced surface immobilization and in-plane confinement of arsenic compared to phosphorus, and a dose-rate independent arsenic saturation density of 0.24 ± 0.04 monolayers. We demonstrate the successful encapsulation of arsenic delta-layers using silicon molecular beam epitaxy, and find electrical characteristics that are competitive with equivalent structures fabricated with phosphorus. Arsenic delta-layers are also found to offer confinement as good as similarly prepared phosphorus layers, while still retaining >80% carrier activation and sheet resistances of <2 kΩ/square. These excellent characteristics of arsenic represent opportunities to enhance existing capabilities of atomic-scale fabrication of dopant structures in silicon, and may be important for three-dimensional devices, where vertical control of the position of device components is critical.

11.
Sci Adv ; 3(6): e1602586, 2017 06.
Article in English | MEDLINE | ID: mdl-28782006

ABSTRACT

It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) to micrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the characteristics of buried dopant nanostructures could only be inferred from destructive techniques and/or the performance of the final electronic device; this severely limits engineering and manufacture of real-world devices based on atomic-scale lithography. Here, we use scanning microwave microscopy (SMM) to image and electronically characterize three-dimensional phosphorus nanostructures fabricated via scanning tunneling microscope-based lithography. The SMM measurements, which are completely nondestructive and sensitive to as few as 1900 to 4200 densely packed P atoms 4 to 15 nm below a silicon surface, yield electrical and geometric properties in agreement with those obtained from electrical transport and secondary ion mass spectroscopy for unpatterned phosphorus δ layers containing ~1013 P atoms. The imaging resolution was 37 ± 1 nm in lateral and 4 ± 1 nm in vertical directions, both values depending on SMM tip size and depth of dopant layers. In addition, finite element modeling indicates that resolution can be substantially improved using further optimized tips and microwave gradient detection. Our results on three-dimensional dopant structures reveal reduced carrier mobility for shallow dopant layers and suggest that SMM could aid the development of fabrication processes for surface code quantum computers.

12.
J Phys Condens Matter ; 27(15): 150301, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25782475
13.
J Phys Condens Matter ; 27(5): 050301, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25413973
14.
J Phys Condens Matter ; 27(5): 054002, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25414086

ABSTRACT

We investigate the chemical and structural configuration of acetophenone on Si(0 0 1) using synchrotron radiation core-level spectroscopy techniques and density functional theory calculations. Samples were prepared by vapour phase dosing of clean Si(0 0 1) surfaces with acetophenone in ultrahigh vacuum. Near edge x-ray absorption fine structure spectroscopy and photoelectron spectroscopy measurements were made at room temperature as a function of coverage density and post-deposition anneal temperature. We show that the dominant room temperature adsorption structure lies flat on the substrate, while moderate thermal annealing induces the breaking of Si-C bonds between the phenyl ring and the surface resulting in the reorientation of the adsorbate into an upright configuration.

15.
J Phys Condens Matter ; 26(1): 012001, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24304933

ABSTRACT

We study subsurface arsenic dopants in a hydrogen-terminated Si(001) sample at 77 K, using scanning tunnelling microscopy and spectroscopy. We observe a number of different dopant-related features that fall into two classes, which we call As1 and As2. When imaged in occupied states, the As1 features appear as anisotropic protrusions superimposed on the silicon surface topography and have maximum intensities lying along particular crystallographic orientations. In empty-state images the features all exhibit long-range circular protrusions. The images are consistent with buried dopants that are in the electrically neutral (D0) charge state when imaged in filled states, but become positively charged (D+) through electrostatic ionization when imaged under empty-state conditions, similar to previous observations of acceptors in GaAs. Density functional theory calculations predict that As dopants in the third layer of the sample induce two states lying just below the conduction-band edge, which hybridize with the surface structure creating features with the surface symmetry consistent with our STM images. The As2 features have the surprising characteristic of appearing as a protrusion in filled-state images and an isotropic depression in empty-state images, suggesting they are negatively charged at all biases. We discuss the possible origins of this feature.


Subject(s)
Arsenic/chemistry , Microscopy, Scanning Tunneling , Silicon/chemistry , Cold Temperature , Crystallography , Surface Properties
16.
ACS Nano ; 6(12): 10456-62, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23186379

ABSTRACT

We report that solitary bismuth and antimony atoms, incorporated at Si(111) surfaces, induce either positive or negative charge states depending on the site of the surface reconstruction in which they are located. This is in stark contrast to the hydrogenic donors formed by group V atoms in silicon bulk crystal and therefore has strong implications for the design and fabrication of future highly scaled electronic devices. Using scanning tunnelling microscopy (STM) and density functional theory (DFT) we determine the reconstructions formed by different group V atoms in the Si(111)2 × 1 surface. Based on these reconstructions a model is presented that explains the polarity as well as the location of the observed charges in the surface. Using locally resolved scanning tunnelling spectroscopy we are furthermore able to map out the spatial extent over which a donor atom influences the unoccupied surface and bulk electronic states near the Fermi-level. The results presented here therefore not only show that a dopant atom can induce both positive and negative charges but also reveal the nature of the local electronic structure in the region of the silicon surface where an individual donor atom is present.

17.
J Am Chem Soc ; 134(37): 15312-7, 2012 Sep 19.
Article in English | MEDLINE | ID: mdl-22913673

ABSTRACT

Assembling molecular components into low-dimensional structures offers new opportunities for nanoscale device applications. Here we describe the self-assembly of indium atoms into metallic chains on the silicon (001) surface using adsorbed benzonitrile molecules as nucleation and termination sites. Critically, individual benzonitrile adsorbates can be manipulated using scanning tunneling microscopy. This affords control over the position and orientation of the molecular adsorbates, which in turn determine the origin, direction, and length of the self-assembled metallic chains.

18.
J Chem Phys ; 134(6): 064709, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21322723

ABSTRACT

It has been observed in scanning tunneling microscopy (STM) that the adsorption of molecules on the (001) surface of a Group IV semiconductor can lead to an asymmetric ordering of the dimers immediately adjacent to the adsorbate. This so-called pinning may occur along the dimer row on only one, or both sides of the adsorbate. Here we present a straightforward methodology for predicting such pinning and illustrate this approach for several different adsorbate structures on the Si(001) surface. This approach extends earlier work by including the effects of coupling across the adsorbate as well as the nearest-neighbor interactions between the chemisorbed dimer and its adjacent dimers. The results are shown to be in excellent agreement with the room temperature experimental STM data. The examples also show how this approach can serve as a powerful tool for discriminating between alternative possible adsorbate structures on a dimerized semiconductor (001) surface, especially in cases of molecular adsorption where the STM measurements provide insufficient details of the underlying atomic structure.

19.
Phys Chem Chem Phys ; 11(15): 2747-59, 2009 Apr 21.
Article in English | MEDLINE | ID: mdl-19421533

ABSTRACT

Using density functional theory, we report detailed reaction path calculations for the reaction of acetone with the silicon (001) surface. We identify the key reaction intermediates of dissociative adsorption and the transition states between them. This resolves the identity of the one-dimer intermediate observed in STM experiments and its role in the formation of several two-dimer-wide end products of dissociation. Key to the understanding of the dissociation mechanism is the ambiphilic character of the two reactants, that is the simultaneous expression of electrophilic and nucleophilic reactivities in both the surface and the acetone molecule.

20.
J Am Chem Soc ; 129(37): 11402-7, 2007 Sep 19.
Article in English | MEDLINE | ID: mdl-17718488

ABSTRACT

The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon-organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density functional theory calculations to study the adsorption of a simple ketone [acetone; (CH(3))(2)CO] to the silicon (001) surface. We show both bias and time-dependent STM images and their agreement with total energy DFT calculations, simulated STM images, and published spectroscopic data. We investigate the stability of the resulting adsorbate structures with respect to temperature and applied STM tip bias and current. We demonstrate the ability to convert from the kinetically favored single-dimer alpha-H cleavage adsorbate structure to thermodynamically favored bridge-bonded adsorbate structures. This can be performed for the entire surface using a thermal anneal or, for individual molecules, using the highly confined electron beam of the STM tip. We propose the use of the carbonyl functional group to tether organic molecules to silicon may lead to increased stability of the adsorbates with respect to current-voltage characterization. This has important implications for the creation of robust single-molecule devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...