Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(9): e45682, 2012.
Article in English | MEDLINE | ID: mdl-23029181

ABSTRACT

Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state.


Subject(s)
Proteome , Tardigrada/metabolism , Animals , Electrophoresis, Polyacrylamide Gel , Tardigrada/embryology , Tardigrada/growth & development , Tardigrada/physiology
2.
Bioinform Biol Insights ; 6: 69-96, 2012.
Article in English | MEDLINE | ID: mdl-22563243

ABSTRACT

Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant.

3.
PLoS One ; 5(3): e9502, 2010 Mar 03.
Article in English | MEDLINE | ID: mdl-20224743

ABSTRACT

BACKGROUND: Tardigrades are small, multicellular invertebrates which are able to survive times of unfavourable environmental conditions using their well-known capability to undergo cryptobiosis at any stage of their life cycle. Milnesium tardigradum has become a powerful model system for the analysis of cryptobiosis. While some genetic information is already available for Milnesium tardigradum the proteome is still to be discovered. PRINCIPAL FINDINGS: Here we present to the best of our knowledge the first comprehensive study of Milnesium tardigradum on the protein level. To establish a proteome reference map we developed optimized protocols for protein extraction from tardigrades in the active state and for separation of proteins by high resolution two-dimensional gel electrophoresis. Since only limited sequence information of M. tardigradum on the genome and gene expression level is available to date in public databases we initiated in parallel a tardigrade EST sequencing project to allow for protein identification by electrospray ionization tandem mass spectrometry. 271 out of 606 analyzed protein spots could be identified by searching against the publicly available NCBInr database as well as our newly established tardigrade protein database corresponding to 144 unique proteins. Another 150 spots could be identified in the tardigrade clustered EST database corresponding to 36 unique contigs and ESTs. Proteins with annotated function were further categorized in more detail by their molecular function, biological process and cellular component. For the proteins of unknown function more information could be obtained by performing a protein domain annotation analysis. Our results include proteins like protein member of different heat shock protein families and LEA group 3, which might play important roles in surviving extreme conditions. CONCLUSIONS: The proteome reference map of Milnesium tardigradum provides the basis for further studies in order to identify and characterize the biochemical mechanisms of tolerance to extreme desiccation. The optimized proteomics workflow will enable application of sensitive quantification techniques to detect differences in protein expression, which are characteristic of the active and anhydrobiotic states of tardigrades.


Subject(s)
Proteomics/methods , Tardigrada/genetics , Tardigrada/metabolism , Algorithms , Animals , Blotting, Western , Contig Mapping , Databases, Protein , Electrophoresis, Gel, Two-Dimensional , Expressed Sequence Tags , Isoelectric Focusing , Proteome , Software , Spectrometry, Mass, Electrospray Ionization/methods
4.
Biogerontology ; 11(3): 321-34, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19894137

ABSTRACT

Mitochondria being the major source and target of reactive oxygen species (ROS) play a crucial role during ageing. We analyzed ageing and calorie restriction (CR)-induced changes in abundance of rat liver mitochondrial proteins to understand key aspects behind the age-retarding mechanism of CR. The combination of blue-native (BN) gel system with fluorescence Difference Gel Electrophoresis (DIGE) facilitated an efficient analysis of soluble and membrane proteins, existing as monomers or multi-protein assemblies. Changes in abundance of specific key subunits of respiratory chain complexes I, IV and V, critical for activity and/or assembly of the complexes were identified. CR lowered complex I assembly and complex IV activity, which is discussed as a molecular mechanism to minimize ROS production at mitochondria. Notably, the antioxidant system was found to be least affected. The GSH:GSSG couple could be depicted as a rapid mean to handle the fluctuations in ROS levels led by reversible metabolic shifts. We evaluated the relative significance of ROS generation against quenching. We also observed parallel and unidirectional changes as effect of ageing and CR, in subunits of ATP synthase, cytochrome P450 and glutathione S-transferase. This is the first report on such 'putatively hormetic' ageing-analogous effects of CR, besides the age-retarding ones.


Subject(s)
Aging/metabolism , Caloric Restriction , Mitochondria, Liver/metabolism , Animals , Antioxidants/metabolism , Electron Transport Complex IV/metabolism , Electrophoresis, Polyacrylamide Gel , Glutathione/metabolism , Male , Mitochondria, Liver/enzymology , Oxidative Phosphorylation , Oxidative Stress , Rats , Rats, Wistar , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...