Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Comp Biochem Physiol C Toxicol Pharmacol ; 137(4): 313-23, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15228949

ABSTRACT

The fathead minnow (Pimephales promelas) was employed to examine if dietary vitamin E supplementation could protect the inner ear from the deleterious effects of noise. Fish were fed one of the three experimental diets containing either: (1) low vitamin E content (14.5 mg/kg diet as alpha-tocopheryl acetate), (2) an adequate amount of vitamin E (50 mg/kg), or (3) high vitamin E content (450 mg/kg). After 4 weeks on the diet, fish were exposed to either 2 or 24 h of intense white noise (142 dB re: 1 microPa, bandwidth 0.3-4.0 kHz). Auditory thresholds were measured, using the auditory brainstem response (ABR) technique, within 0.5 days following noise exposure or within a recovery period of 1.5 days. Additionally, liver samples were analyzed for vitamin E content. Increased vitamin E supplementation was dose-dependently associated with a reduction in statistically significant threshold shifts after noise exposure and an enhancement of recovery (i.e., more complete recovery over a shorter period) for fish exposed to either 2 or 24 h of noise. The results obtained suggest that dietary vitamin E affords protection against noise exposure in a cyprinid fish.


Subject(s)
Fishes/physiology , Hearing Loss, Noise-Induced/prevention & control , Noise/adverse effects , alpha-Tocopherol/analogs & derivatives , alpha-Tocopherol/administration & dosage , alpha-Tocopherol/pharmacology , Acoustic Stimulation , Animals , Audiometry , Auditory Threshold/drug effects , Auditory Threshold/physiology , Dietary Supplements , Disease Models, Animal , Hearing Loss, Noise-Induced/physiopathology , Male , Time Factors , Tocopherols
2.
Article in English | MEDLINE | ID: mdl-12160871

ABSTRACT

As concerns about the effects of underwater anthropogenic noises on the auditory function of organisms increases, it is imperative to assess if all organisms are equally affected by the same noise source. Consequently, auditory capabilities of an organism need to be evaluated and compared interspecifically. Teleost fishes provide excellent models to examine these issues due to their diversity of hearing capabilities. Broadly, fishes can be categorized as hearing specialists (broad hearing frequency range with low auditory thresholds) or hearing generalists (narrower frequency range with higher auditory thresholds). The goal of this study was to examine the immediate effects of white noise exposure (0.3-2.0 kHz, 142 dB re: 1 microPa) and recovery after exposure (1-6 days) on a hearing generalist fish, bluegill sunfish (Lepomis macrochirus). Noise exposure resulted in only a slight, but not statistically significant, elevation in auditory threshold compared to fish not exposed to noise. In combination with results from our previous studies examining effects of noise on a hearing specialist fish, the fathead minnow (Pimephales promelas), this study provides evidence supporting the hypothesis that fish's auditory thresholds can be differentially affected by noise exposure.


Subject(s)
Fishes/physiology , Noise , Animals , Evoked Potentials, Auditory , Hair Cells, Auditory/physiology
SELECTION OF CITATIONS
SEARCH DETAIL