Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Cyst Fibros ; 23(3): 450-456, 2024 May.
Article in English | MEDLINE | ID: mdl-38246828

ABSTRACT

INTRODUCTION: Inflammation appears early in cystic fibrosis (CF) pathogenesis, with specific elevated inflammatory markers in bronchoalveolar lavage fluid (BALF) correlating with structural lung disease. Our aim was to identify markers of airway inflammation able to predict bronchiectasis progression over two years with high sensitivity and specificity. METHODS: Children with CF with two chest computed tomography (CT) scans and bronchoscopies at a two-year interval were included (n= 10 at 1 and 3 years and n= 27 at 3 and 5 years). Chest CTs were scored for increase in bronchiectasis (Δ%Bx), using the PRAGMA-CF score. BALF collected with the first CT scan were analyzed for neutrophil% (n= 36), myeloperoxidase (MPO) (n= 25), neutrophil elastase (NE) (n= 26), and with a protein array for inflammatory and fibrotic markers (n= 26). RESULTS: MPO, neutrophil%, and inducible T-cell costimulator ligand (ICOSLG), but not clinical characteristics, correlated significantly with Δ%Bx. Evaluation of neutrophil%, NE, MPO, interleukin-8 (IL-8), ICOSLG, and hepatocyte growth factor (HGF), for predicting an increase of > 0.5% of Δ%Bx in two years, showed that IL-8 had the best sensitivity (82%) and specificity (73%). Neutrophil%, ICOSLG and HGF had sensitivities of 85, 82, and 82% and specificities of 59, 67 and 60%, respectively. The odds ratio for risk of >0.5% Δ%Bx was higher for IL-8 (12.4) than for neutrophil%, ICOSLG, and HGF (5.9, 5.3, and 6.7, respectively). Sensitivity and specificity were lower for NE and MPO). CONCLUSIONS: High levels of IL-8, neutrophil%, ICOSGL and HGF in BALF may be good predictors for progression of bronchiectasis in young children with CF.


Subject(s)
Biomarkers , Bronchiectasis , Bronchoalveolar Lavage Fluid , Cystic Fibrosis , Disease Progression , Neutrophils , Peroxidase , Humans , Bronchiectasis/etiology , Bronchiectasis/diagnosis , Female , Male , Biomarkers/analysis , Biomarkers/metabolism , Cystic Fibrosis/complications , Child, Preschool , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/chemistry , Neutrophils/metabolism , Peroxidase/analysis , Leukocyte Elastase/analysis , Leukocyte Elastase/metabolism , Infant , Hepatocyte Growth Factor/analysis , Hepatocyte Growth Factor/metabolism , Tomography, X-Ray Computed , Interleukin-8/analysis , Interleukin-8/metabolism , Inflammation/diagnosis , Bronchoscopy , Sensitivity and Specificity
2.
J Cyst Fibros ; 21(6): 967-976, 2022 11.
Article in English | MEDLINE | ID: mdl-35732550

ABSTRACT

BACKGROUND: Macrophages are the major resident immune cells in human airways coordinating responses to infection and injury. In cystic fibrosis (CF), neutrophils are recruited to the airways shortly after birth, and actively exocytose damaging enzymes prior to chronic infection, suggesting a potential defect in macrophage immunomodulatory function. Signaling through the exhaustion marker programmed death protein 1 (PD-1) controls macrophage function in cancer, sepsis, and airway infection. Therefore, we sought to identify potential associations between macrophage PD-1 and markers of airway disease in children with CF. METHODS: Blood and bronchoalveolar lavage fluid (BALF) were collected from 45 children with CF aged 3 to 62 months and structural lung damage was quantified by computed tomography. The phenotype of airway leukocytes was assessed by flow cytometry, while the release of enzymes and immunomodulatory mediators by molecular assays. RESULTS: Airway macrophage PD-1 expression correlated positively with structural lung damage, neutrophilic inflammation, and infection. Interestingly, even in the absence of detectable infection, macrophage PD-1 expression was elevated and correlated with neutrophilic inflammation. In an in vitro model mimicking leukocyte recruitment into CF airways, soluble mediators derived from recruited neutrophils directly induced PD-1 expression on recruited monocytes/macrophages, suggesting a causal link between neutrophilic inflammation and macrophage PD-1 expression in CF. Finally, blockade of PD-1 in a short-term culture of CF BALF leukocytes resulted in improved pathogen clearance. CONCLUSION: Taken together, these findings suggest that in early CF lung disease, PD-1 upregulation associates with airway macrophage exhaustion, neutrophil takeover, infection, and structural damage.


Subject(s)
Cystic Fibrosis , Child , Humans , Programmed Cell Death 1 Receptor , Lung , Inflammation , Bacteria/metabolism , Biomarkers/metabolism , Macrophages
3.
Molecules ; 27(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35630694

ABSTRACT

Dengue is an important arboviral infectious disease for which there is currently no specific cure. We report gemini-like (geminoid) alkylated amphiphilic peptides containing lysines in combination with glycines or alanines (C15H31C(O)-Lys-(Gly or Ala)nLys-NHC16H33, shorthand notation C16-KXnK-C16 with X = A or G, and n = 0-2). The representatives with 1 or 2 Ala inhibit dengue protease and human furin, two serine proteases involved in dengue virus infection that have peptides with cationic amino acids as their preferred substrates, with IC50 values in the lower µM range. The geminoid C16-KAK-C16 combined inhibition of DENV2 protease (IC50 2.3 µM) with efficacy against replication of wildtype DENV2 in LLC-MK2 cells (EC50 4.1 µM) and an absence of toxicity. We conclude that the lysine-based geminoids have activity against dengue virus infection, which is based on their inhibition of the proteases involved in viral replication and are therefore promising leads to further developing antiviral therapeutics, not limited to dengue.


Subject(s)
Antiviral Agents , Dengue Virus , Furin , Protease Inhibitors , Virus Replication , Antiviral Agents/pharmacology , Dengue/drug therapy , Dengue Virus/drug effects , Dengue Virus/physiology , Furin/antagonists & inhibitors , Humans , Peptide Hydrolases , Peptides/pharmacology , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
4.
Front Physiol ; 12: 619442, 2021.
Article in English | MEDLINE | ID: mdl-33613309

ABSTRACT

A deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) function in CF leads to chronic lung disease. CF is associated with abnormalities in fatty acids, ceramides, and cholesterol, their relationship with CF lung pathology is not completely understood. Therefore, we examined the impact of CFTR deficiency on lipid metabolism and pro-inflammatory signaling in airway epithelium using mass spectrometric, protein array. We observed a striking imbalance in fatty acid and ceramide metabolism, associated with chronic oxidative stress under basal conditions in CF mouse lung and well-differentiated bronchial epithelial cell cultures of CFTR knock out pig and CF patients. Cell-autonomous features of all three CF models included high ratios of ω-6- to ω-3-polyunsaturated fatty acids and of long- to very long-chain ceramide species (LCC/VLCC), reduced levels of total ceramides and ceramide precursors. In addition to the retinoic acid analog fenretinide, the anti-oxidants glutathione (GSH) and deferoxamine partially corrected the lipid profile indicating that oxidative stress may promote the lipid abnormalities. CFTR-targeted modulators reduced the lipid imbalance and oxidative stress, confirming the CFTR dependence of lipid ratios. However, despite functional correction of CF cells up to 60% of non-CF in Ussing chamber experiments, a 72-h triple compound treatment (elexacaftor/tezacaftor/ivacaftor surrogate) did not completely normalize lipid imbalance or oxidative stress. Protein array analysis revealed differential expression and shedding of cytokines and growth factors from CF epithelial cells compared to non-CF cells, consistent with sterile inflammation and tissue remodeling under basal conditions, including enhanced secretion of the neutrophil activator CXCL5, and the T-cell activator CCL17. However, treatment with antioxidants or CFTR modulators that mimic the approved combination therapies, ivacaftor/lumacaftor and ivacaftor/tezacaftor/elexacaftor, did not effectively suppress the inflammatory phenotype. We propose that CFTR deficiency causes oxidative stress in CF airway epithelium, affecting multiple bioactive lipid metabolic pathways, which likely play a role in CF lung disease progression. A combination of anti-oxidant, anti-inflammatory and CFTR targeted therapeutics may be required for full correction of the CF phenotype.

5.
Stem Cell Res ; 44: 101744, 2020 04.
Article in English | MEDLINE | ID: mdl-32220772

ABSTRACT

Cystic Fibrosis (CF) is a genetic disease caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene which encodes for a chloride ion channel regulating the balance of salt and water across secretory epithelia. Here we generated an iPSC line from a CF patient homozygous for the p.Asn1303Lys mutation, a Class II folding defect mutation. This iPSC line provides a useful resource for disease modeling and to investigate the pharmacological response to CFTR modulators in iPSC derived epithelia.


Subject(s)
Cystic Fibrosis , Induced Pluripotent Stem Cells , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Homozygote , Humans , Mutation
6.
J Cyst Fibros ; 19(6): 902-909, 2020 11.
Article in English | MEDLINE | ID: mdl-32057679

ABSTRACT

BACKGROUND: Previously, we showed that abnormal levels of bioactive lipids in bronchoalveolar lavage fluid (BALF) from infants with cystic fibrosis (CF) correlated with early structural lung damage. METHOD: To extend these studies, BALF bioactive lipid measurement by mass spectrometry and chest computed tomography (CT, combined with the sensitive PRAGMA-CF scoring method) were performed longitudinally at 2-year intervals in a new cohort of CF children (n = 21, aged 1-5 yrs). RESULTS: PRAGMA-CF, neutrophil elastase activity, and myeloperoxidase correlated with BALF lysolipids and isoprostanes, markers of oxidative stress, as well as prostaglandin E2 and combined ceramide precursors (Spearman's Rho > 0.5; P < 0.01 for all). Multiple protein agonists of inflammation and tissue remodeling, measured by Olink protein array, correlated positively (r = 0.44-0.79, p < 0.05) with PRAGMA-CF scores and bioactive lipid levels. Notably, levels of lysolipids, prostaglandin E2 and isoprostanes at first BALF predicted the evolution of PRAGMA-CF scores 2 years later. In wild-type differentiated primary bronchial epithelial cells, and in CFTR-inducible iCFBE cells, treatment with a lysolipid receptor agonist (VPC3114) enhanced shedding of pro-inflammatory and pro-fibrotic proteins. CONCLUSIONS: Together, our findings suggest that bioactive lipids in BALF correlate with and possibly predict structural lung disease in CF children, which supports their use as biomarkers of disease progression and treatment efficacy. Furthermore, our data suggest a causative role of airway lysolipids and oxidative stress in the progression of early CF lung disease, unveiling potential therapeutic targets.


Subject(s)
Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Cystic Fibrosis/metabolism , Lipid Metabolism , Respiratory System/metabolism , Bronchoscopy , Child, Preschool , Cytokines/metabolism , Disease Progression , Female , Humans , Infant , Inflammation/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Longitudinal Studies , Male , Oxidative Stress , Tomography, X-Ray Computed
7.
Stem Cell Reports ; 12(6): 1389-1403, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31080112

ABSTRACT

Organotypic culture systems from disease-specific induced pluripotent stem cells (iPSCs) exhibit obvious advantages compared with immortalized cell lines and primary cell cultures, but implementation of iPSC-based high-throughput (HT) assays is still technically challenging. Here, we demonstrate the development and conduction of an organotypic HT Cl-/I- exchange assay using cystic fibrosis (CF) disease-specific iPSCs. The introduction of a halide-sensitive YFP variant enabled automated quantitative measurement of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function in iPSC-derived intestinal epithelia. CFTR function was partially rescued by treatment with VX-770 and VX-809, and seamless gene correction of the p.Phe508del mutation resulted in full restoration of CFTR function. The identification of a series of validated primary hits that improve the function of p.Phe508del CFTR from a library of ∼42,500 chemical compounds demonstrates that the advantages of complex iPSC-derived culture systems for disease modeling can also be utilized for drug screening in a true HT format.


Subject(s)
Aminophenols/pharmacology , Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Epithelial Cells , Genetic Engineering , Induced Pluripotent Stem Cells , Quinolones/pharmacology , Amino Acid Sequence , Cell Line , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Evaluation, Preclinical , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Sequence Deletion
8.
J Cyst Fibros ; 18(6): 781-789, 2019 11.
Article in English | MEDLINE | ID: mdl-31031161

ABSTRACT

BACKGROUND: Clinical data indicate that airway inflammation in children with cystic fibrosis (CF) arises early, is associated with structural lung damage, and predicts progression. In bronchoalveolar lavage fluid (BALF) from CFTR mutant mice, several aspects of lipid metabolism are abnormal that contributes to lung disease. We aimed to determine whether lipid pathway dysregulation is also observed in BALF from children with CF, to identify biomarkers of early lung disease and potential therapeutic targets. METHODS: A comprehensive panel of lipids that included Sphingolipids, oxylipins, isoprostanes and lysolipids, all bioactive lipid species known to be involved in inflammation and tissue remodeling, were measured in BALF from children with CF (1-6 years, N = 33) and age-matched non-CF patients with unexplained inflammatory disease (N = 16) by HPLC-MS/MS. Lipid data were correlated with chest CT scores and BALF inflammation biomarkers. RESULTS: The ratio of long chain to very long chain ceramide species (LCC/VLCC) and lysolipid levels were enhanced in CF compared to non-CF patients, despite comparable neutrophil counts and bacterial load. In CF patients both LCC/VLCC and lysolipid levels correlated with inflammation and chest CT scores. The ceramide precursors Sphingosine, Sphinganine, Sphingomyelin, correlated with inflammation, whilst the oxidative stress marker isoprostane correlated with inflammation and chest CT scores. No correlation between lipids and current bacterial infection in CF (N = 5) was observed. CONCLUSIONS: Several lipid biomarkers of early CF lung disease were identified, which point toward potential disease monitoring and therapeutic approaches that can be used to complement CFTR modulators.


Subject(s)
Bronchoalveolar Lavage Fluid/immunology , Cystic Fibrosis , Isoprostanes , Lung , Oxidative Stress/immunology , Oxylipins , Sphingolipids , Biomarkers/analysis , Biomarkers/metabolism , Cell Count/methods , Child, Preschool , Cystic Fibrosis/diagnosis , Cystic Fibrosis/immunology , Cystic Fibrosis/metabolism , Disease Progression , Female , Humans , Inflammation/metabolism , Isoprostanes/analysis , Isoprostanes/metabolism , Lipidomics/methods , Lung/immunology , Lung/metabolism , Male , Oxylipins/analysis , Oxylipins/metabolism , Sphingolipids/analysis , Sphingolipids/metabolism , Tandem Mass Spectrometry/methods
9.
J Endocrinol ; 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30721137

ABSTRACT

Cystic fibrosis-related diabetes (CFRD) is a common complication for patients with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). The cause of CFRD is unclear, but a commonly observed reduction in first-phase insulin secretion suggests defects at the beta cell level. Here we aimed to examine beta- and alpha-cell function in the Cftrtm1EUR/F508del mouse model (C57BL/6J), which carries the most common human mutation in CFTR, the F508del mutation. CFTR expression, beta cell mass, insulin granule distribution, hormone secretion and single cell capacitance changes were evaluated using islets (or beta cells) from F508del mice and age-matched wild-type mice aged 7-10 weeks. Granular pH was measured with DND-189 fluorescence. Serum glucose, insulin and glucagon levels were measured in vivo, and glucose tolerance was assessed using IPGTT. We show increased secretion of proinsulin and concomitant reduced secretion of C-peptide in islets from F508del mice compared to WT mice. Exocytosis and number of docked granules was reduced. We confirmed reduced granular pH by CFTR stimulation. We detected decreased pancreatic beta cell area, but unchanged beta cell number. Moreover, the F508del mutation caused failure to suppress glucagon secretion leading to hyperglucagonemia. In conclusion, F508del mice have beta cell defects resulting in 1) reduced number of docked insulin granules and reduced exocytosis, and 2) potential defective proinsulin cleavage and secretion of immature insulin. These observations provide insight into the functional role of CFTR in pancreatic islets and contribute to increased understanding of the pathogenesis of CFRD.

10.
Am J Respir Crit Care Med ; 199(7): 873-881, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30281324

ABSTRACT

RATIONALE: Neutrophils are recruited to the airways of individuals with cystic fibrosis (CF). In adolescents and adults with CF, airway neutrophils actively exocytose the primary granule protease elastase (NE), whose extracellular activity correlates with lung damage. During childhood, free extracellular NE activity is measurable only in a subset of patients, and the exocytic function of airway neutrophils is unknown. OBJECTIVES: To measure NE exocytosis by airway neutrophils in relation to free extracellular NE activity and lung damage in children with CF. METHODS: We measured lung damage using chest computed tomography coupled with the Perth-Rotterdam Annotated Grid Morphometric Analysis for Cystic Fibrosis scoring system. Concomitantly, we phenotyped blood and BAL fluid leukocytes by flow and image cytometry, and measured free extracellular NE activity using spectrophotometric and Förster resonance energy transfer assays. Children with airway inflammation linked to aerodigestive disorder were enrolled as control subjects. MEASUREMENTS AND MAIN RESULTS: Children with CF but not disease control children harbored BAL fluid neutrophils with high exocytosis of primary granules, before the detection of bronchiectasis. This measure of NE exocytosis correlated with lung damage (R = 0.55; P = 0.0008), whereas the molecular measure of free extracellular NE activity did not. This discrepancy may be caused by the inhibition of extracellular NE by BAL fluid antiproteases and its binding to leukocytes. CONCLUSIONS: NE exocytosis by airway neutrophils occurs in all children with CF, and its cellular measure correlates with early lung damage. These findings implicate live airway neutrophils in early CF pathogenesis, which should instruct biomarker development and antiinflammatory therapy in children with CF.


Subject(s)
Cystic Fibrosis/physiopathology , Exocytosis/physiology , Lung Injury/physiopathology , Neutrophils/metabolism , Pancreatic Elastase/metabolism , Child, Preschool , Female , Humans , Infant , Male
11.
Eur Respir J ; 52(4)2018 10.
Article in English | MEDLINE | ID: mdl-30190273

ABSTRACT

Cystic fibrosis (CF) lung disease progressively worsens from infancy to adulthood. Disease-driven changes in early CF airway fluid metabolites may identify therapeutic targets to curb progression.CF patients aged 12-38 months (n=24; three out of 24 later denoted as CF screen positive, inconclusive diagnosis) received chest computed tomography scans, scored by the Perth-Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF) method to quantify total lung disease (PRAGMA-%Dis) and components such as bronchiectasis (PRAGMA-%Bx). Small molecules in bronchoalveolar lavage fluid (BALF) were measured with high-resolution accurate-mass metabolomics. Myeloperoxidase (MPO) was quantified by ELISA and activity assays.Increased PRAGMA-%Dis was driven by bronchiectasis and correlated with airway neutrophils. PRAGMA-%Dis correlated with 104 metabolomic features (p<0.05, q<0.25). The most significant annotated feature was methionine sulfoxide (MetO), a product of methionine oxidation by MPO-derived oxidants. We confirmed the identity of MetO in BALF and used reference calibration to confirm correlation with PRAGMA-%Dis (Spearman's ρ=0.582, p=0.0029), extending to bronchiectasis (PRAGMA-%Bx; ρ=0.698, p=1.5×10-4), airway neutrophils (ρ=0.569, p=0.0046) and BALF MPO (ρ=0.803, p=3.9×10-6).BALF MetO associates with structural lung damage, airway neutrophils and MPO in early CF. Further studies are needed to establish whether methionine oxidation directly contributes to early CF lung disease and explore potential therapeutic targets indicated by these findings.


Subject(s)
Bronchiectasis/metabolism , Cystic Fibrosis/metabolism , Methionine/analogs & derivatives , Peroxidase/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Bronchoscopy , Child, Preschool , Cystic Fibrosis/diagnostic imaging , Disease Progression , Female , Humans , Infant , Lung/metabolism , Male , Methionine/metabolism , Neutrophils/metabolism , Oxidants/pharmacology , Oxidation-Reduction , Prospective Studies , Tomography, X-Ray Computed
12.
Free Radic Biol Med ; 126: 334-340, 2018 10.
Article in English | MEDLINE | ID: mdl-30144632

ABSTRACT

Thiocyanate is a heme peroxidase substrate that scavenges oxidants produced during inflammation and regulates host defense. In cystic fibrosis (CF) patients, increased airway thiocyanate levels are associated with improved lung function. Research on airway thiocyanate is limited, however, because convenient non-invasive airway sampling methods, such as exhaled breath condensate (EBC), yield low concentrations that are difficult to detect with available assays. In the present study, we developed a method for the determination of thiocyanate in dilute samples using isotope dilution headspace gas chromatography-coupled high-resolution, accurate-mass mass spectrometry (GC-HRMS). The method reliably quantified as little as 4 pmol thiocyanate in EBC and could detect even lower amounts. We successfully measured thiocyanate in EBC from seven healthy donors, with a mean ±â€¯SD of 27 ±â€¯16 nM and a median inter-assay coefficient of variation of 10.4% over six months. The method was applied to other biological fluids (plasma from the same visit as EBC donation; bronchoalveolar lavage fluid [BALF] from infants with CF; and healthy adult mouse BALF), giving reliable quantification of samples ranging from 10 nM to 100 µM. Thiocyanate concentrations in fluids besides EBC were (from lowest to highest): 0.73 ±â€¯0.39 µM in BALF of healthy adult mice (n = 6); 1.4 ±â€¯1.4 µM in BALF from infants with CF (n = 24); 46 ±â€¯22 µM in the plasma of adult volunteers (n = 7). These results demonstrate the utility of this new method for clinical determination of thiocyanate in EBC and other biological fluids.


Subject(s)
Breath Tests/methods , Cystic Fibrosis/diagnosis , Inflammation/metabolism , Thiocyanates/metabolism , Animals , Biomarkers/chemistry , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Chromatography, Gas , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Exhalation , Female , Humans , Infant , Inflammation/diagnosis , Inflammation/pathology , Male , Mice , Thiocyanates/chemistry , Thiocyanates/isolation & purification
13.
Mediators Inflamm ; 2018: 1067134, 2018.
Article in English | MEDLINE | ID: mdl-29540993

ABSTRACT

Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) share molecular mechanisms that cause the pathological symptoms they have in common. Here, we review evidence suggesting that hyperactivity of the EGFR/ADAM17 axis plays a role in the development of chronic lung disease in both CF and COPD. The ubiquitous transmembrane protease A disintegrin and metalloprotease 17 (ADAM17) forms a functional unit with the EGF receptor (EGFR), in a feedback loop interaction labeled the ADAM17/EGFR axis. In airway epithelial cells, ADAM17 sheds multiple soluble signaling proteins by proteolysis, including EGFR ligands such as amphiregulin (AREG), and proinflammatory mediators such as the interleukin 6 coreceptor (IL-6R). This activity can be enhanced by injury, toxins, and receptor-mediated external triggers. In addition to intracellular kinases, the extracellular glutathione-dependent redox potential controls ADAM17 shedding. Thus, the epithelial ADAM17/EGFR axis serves as a receptor of incoming luminal stress signals, relaying these to neighboring and underlying cells, which plays an important role in the resolution of lung injury and inflammation. We review evidence that congenital CFTR deficiency in CF and reduced CFTR activity in chronic COPD may cause enhanced ADAM17/EGFR signaling through a defect in glutathione secretion. In future studies, these complex interactions and the options for pharmaceutical interventions will be further investigated.


Subject(s)
ADAM17 Protein/metabolism , Cystic Fibrosis/metabolism , ErbB Receptors/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Animals , Cystic Fibrosis/pathology , Humans , Lung/metabolism , Lung/pathology , Pulmonary Disease, Chronic Obstructive/pathology
14.
Am J Physiol Lung Cell Mol Physiol ; 314(4): L555-L568, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29351448

ABSTRACT

The EGF receptor (EGFR)/a disintegrin and metalloproteinase 17 (ADAM17) signaling pathway mediates the shedding of growth factors and secretion of cytokines and is involved in chronic inflammation and tissue remodeling. Since these are hallmarks of cystic fibrosis (CF) lung disease, we hypothesized that CF transmembrane conductance regulator (CFTR) deficiency enhances EGFR/ADAM17 activity in human bronchial epithelial cells. In CF bronchial epithelial CFBE41o- cells lacking functional CFTR (iCFTR-) cultured at air-liquid interface (ALI) we found enhanced ADAM17-mediated shedding of the EGFR ligand amphiregulin (AREG) compared with genetically identical cells with induced CFTR expression (iCFTR+). Expression of the inactive G551D-CFTR did not have this effect, suggesting that active CFTR reduces EGFR/ADAM17 activity. This was confirmed in CF compared with normal differentiated primary human bronchial epithelial cells (HBEC-ALI). ADAM17-mediated AREG shedding was tightly regulated by the EGFR/MAPK pathway. Compared with iCFTR+ cells, iCFTR- cells displayed enhanced apical presentation and phosphorylation of EGFR, in accordance with enhanced EGFR/ADAM17 activity in CFTR-deficient cells. The nonpermeant natural antioxidant glutathione (GSH) strongly inhibited AREG release in iCFTR and in primary HBEC-ALI, suggesting that ADAM17 activity is directly controlled by extracellular redox potentials in differentiated airway epithelium. Furthermore, the fluorescent redox probe glutaredoxin 1-redox-sensitive green fluorescent protein-glycosylphosphatidylinositol (Grx1-roGFP-GPI) indicated more oxidized conditions in the extracellular space of iCFTR- cells, consistent with the role of CFTR in GSH transport. Our data suggest that in CFTR-deficient airway epithelial cells a more oxidized state of the extracellular membrane, likely caused by defective GSH secretion, leads to enhanced activity of the EGFR/ADAM17 signaling axis. In CF lungs this could contribute to tissue remodeling and hyperinflammation.


Subject(s)
ADAM17 Protein/metabolism , Bronchi/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/physiopathology , Epithelium/pathology , ADAM17 Protein/genetics , Amphiregulin/genetics , Amphiregulin/metabolism , Bronchi/metabolism , Cell Differentiation , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cytokines/metabolism , Epithelium/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Oxidation-Reduction , Phosphorylation
15.
J Cyst Fibros ; 17(2S): S40-S45, 2018 03.
Article in English | MEDLINE | ID: mdl-29107600

ABSTRACT

Cystic Fibrosis (CF) lung disease is associated with dysregulation of host defence systems, which ultimately disrupts the balance between inflammation and resolution and leaves the host susceptible to repeated infection. However, the mechanisms underlying these defects are complex and continue to garner significant interest among the CF research community. This review explores emerging data on novel aspects of innate host defence with promising biomarker and therapeutic potential for CF lung disease. Improved understanding of inflammation and host defence against pathogens in patients and animal models during the progression of CF lung disease is pivotal for the discovery of new therapeutics that can limit and/or prevent damage from birth.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis , Host-Pathogen Interactions/immunology , Immunity, Innate , Cystic Fibrosis/immunology , Cystic Fibrosis/metabolism , Humans , Infections/immunology , Inflammation
16.
J Infect Dis ; 216(10): 1308-1317, 2017 12 05.
Article in English | MEDLINE | ID: mdl-28968805

ABSTRACT

Acute respiratory virus infections predispose the cystic fibrosis (CF) lung to chronic bacterial colonization, which contributes to high mortality. For reasons unknown, respiratory virus infections have a prolonged duration in CF. Here, we demonstrate that mice carrying the most frequent cystic fibrosis transmembrane conductance regulator (CFTR) mutation in humans, ΔF508, show increased morbidity and mortality following infection with a common human enterovirus. ΔF508 mice demonstrated impaired viral clearance, a slower type I interferon response and delayed production of virus-neutralizing antibodies. While the ΔF508 mice had a normal immune cell repertoire, unchanged serum immunoglobulin concentrations and an intact immune response to a T-cell-independent antigen, their response to a T-cell-dependent antigen was significantly delayed. Our studies reveal a novel function for CFTR in antiviral immunity and demonstrate that the ΔF508 mutation in cftr is coupled to an impaired adaptive immune response. This important insight could open up new approaches for patient care and treatment.


Subject(s)
Adaptive Immunity/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis/immunology , Immunity, Innate/genetics , Mutation , Virus Diseases/etiology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Codon , Cystic Fibrosis/complications , Disease Models, Animal , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunization , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Interferon-alpha/biosynthesis , Mice , Poly I-C/immunology , Survival Rate , Viral Load
17.
Am J Physiol Lung Cell Mol Physiol ; 311(5): L1000-L1014, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27663991

ABSTRACT

Progressive lung disease with early onset is the main cause of mortality and morbidity in cystic fibrosis patients. Here we report a reduction of sphingosine-1-phosphate (S1P) in the lung of unchallenged Cftrtm1EUR F508del CFTR mutant mice. This correlates with enhanced infiltration by inducible nitric oxide synthase (iNOS)-expressing granulocytes, B cells, and T cells. Furthermore, the ratio of macrophage-derived dendritic cells (MoDC) to conventional dendritic cells (cDC) is higher in mutant mouse lung, consistent with unprovoked inflammation. Oral application of a S1P lyase inhibitor (LX2931) increases S1P levels in mutant mouse tissues. This normalizes the lung MoDC/cDC ratio and reduces B and T cell counts. Lung granulocytes are enhanced, but iNOS expression is reduced in this population. Although lung LyC6+ monocytes are enhanced by LX2931, they apparently do not differentiate to MoDC and macrophages. After challenge with bacterial toxins (LPS-fMLP) we observe enhanced levels of proinflammatory cytokines TNF-α, KC, IFNγ, and IL-12 and the inducible mucin MUC5AC in mutant mouse lung, evidence of deficient resolution of inflammation. LX2931 does not prevent transient inflammation or goblet cell hyperplasia after challenge, but it reduces MUC5AC and proinflammatory cytokine levels toward normal values. We conclude that lung pathology in homozygous mice expressing murine F508del CFTR, which represents the most frequent mutation in CF patients, is characterized by abnormal behavior of infiltrating myeloid cells and delayed resolution of induced inflammation. This phenotype can be partially corrected by a S1P lyase inhibitor, providing a rationale for therapeutic targeting of the S1P signaling pathway in CF patients.


Subject(s)
Aldehyde-Lyases/antagonists & inhibitors , Cystic Fibrosis/drug therapy , Enzyme Inhibitors/therapeutic use , Imidazoles/therapeutic use , Oximes/therapeutic use , Pneumonia/drug therapy , Aldehyde-Lyases/metabolism , Animals , Biological Transport/drug effects , Body Weight/drug effects , Cystic Fibrosis/diagnostic imaging , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Imidazoles/pharmacology , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/metabolism , Lysophospholipids/metabolism , Mice, Inbred C57BL , Mucin 5AC/metabolism , Mutation/genetics , Myeloid Cells/drug effects , Myeloid Cells/metabolism , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Oximes/pharmacology , Pneumonia/diagnostic imaging , Pneumonia/pathology , Salivary Glands/drug effects , Salivary Glands/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , X-Ray Microtomography
18.
Physiol Rep ; 4(16)2016 08.
Article in English | MEDLINE | ID: mdl-27561911

ABSTRACT

Aberrant activity of a disintegrin and metalloprotease 17 (ADAM17), also known as TACE, and epidermal growth factor receptor (EGFR) has been suggested to contribute to chronic obstructive pulmonary disease (COPD) development and progression. The aim of this study was to investigate the role of these proteins in activation of primary bronchial epithelial cells differentiated at the air-liquid interface (ALI-PBEC) by whole cigarette smoke (CS), comparing cells from COPD patients with non-COPD CS exposure of ALI-PBEC enhanced ADAM17-mediated shedding of the IL-6 receptor (IL6R) and the EGFR agonist amphiregulin (AREG) toward the basolateral compartment, which was more pronounced in cells from COPD patients than in non-COPD controls. CS transiently increased IL6R and AREG mRNA in ALI-PBEC to a similar extent in cultures from both groups, suggesting that posttranslational events determine differential shedding between COPD and non-COPD cultures. We show for the first time by in situ proximity ligation (PLA) that CS strongly enhances interactions of phosphorylated ADAM17 with AREG and IL-6R in an intracellular compartment, suggesting that CS-induced intracellular trafficking events precede shedding to the extracellular compartment. Both EGFR and ADAM17 activity contribute to CS-induced IL-6R and AREG protein shedding and to mRNA expression, as demonstrated using selective inhibitors (AG1478 and TMI-2). Our data are consistent with an autocrine-positive feedback mechanism in which CS triggers shedding of EGFR agonists evoking EGFR activation, in ADAM17-dependent manner, and subsequently transduce paracrine signaling toward myeloid cells and connective tissue. Reducing ADAM17 and EGFR activity could therefore be a therapeutic approach for the tissue remodeling and inflammation observed in COPD.


Subject(s)
ADAM17 Protein/genetics , Bronchi/cytology , Epithelial Cells/metabolism , ErbB Receptors/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , RNA, Messenger/genetics , Receptors, Interleukin-6/metabolism , Smoking/metabolism , Aged , Airway Remodeling , Amphiregulin , Female , Humans , Inhalation Exposure , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology , Quinazolines/administration & dosage , Quinazolines/adverse effects , Quinazolines/metabolism , Signal Transduction , Smoking/adverse effects , Nicotiana/adverse effects , Tyrphostins/administration & dosage , Tyrphostins/adverse effects , Tyrphostins/metabolism
19.
Am J Physiol Lung Cell Mol Physiol ; 310(8): L711-9, 2016 04 15.
Article in English | MEDLINE | ID: mdl-26851259

ABSTRACT

Cystic fibrosis (CF) is caused by homozygous mutations of the CF transmembrane conductance regulator (CFTR) Cl(-) channel, which result in chronic pulmonary infection and inflammation, the major cause of morbidity and mortality. Although these processes are clearly related to each other, each is likely to contribute to the pathology differently. Understanding the contribution of each of these processes to the overall pathology has been difficult, because they are usually so intimately connected. Various CF mouse models have demonstrated abnormal immune responses compared with wild-type (WT) littermates when challenged with live bacteria or bacterial products acutely. However, these studies have not investigated the consequences of persistent inflammation on lung tissue in CF mice, which may better model the lung pathology in patients. We characterized the lung pathology and immune response of Cftr(-/-) (CF) and Cftr(+/+) (WT) mice to chronic administration of Pseudomonas aeruginosa lipopolysaccharide (LPS). We show that, after long-term repeated LPS exposure, CF mice develop an abnormal and persistent immune response, which is associated with more robust structural changes in the lung than those observed in WT mice. Although CF mice and their WT littermates develop lung pathology after chronic exposure to LPS, the inflammation and damage resolve in WT mice. However, CF mice do not recover efficiently, and, as a consequence of their chronic inflammation, CF mice are more susceptible to morphological changes and lung remodeling. This study shows that chronic inflammation alone contributes significantly to aspects of CF lung pathology.


Subject(s)
Cystic Fibrosis/pathology , Lipopolysaccharides/pharmacology , Lung/pathology , Pneumonia/immunology , Airway Remodeling , Animals , Chemokine CXCL10/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/immunology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Lung/immunology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred CFTR , Mice, Knockout , Pneumonia/pathology , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology
20.
Sci Rep ; 5: 12138, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26183966

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the CFTR chloride channel. Deletion of phenylalanine 508 (F508del), the most frequent CF mutation, impairs CFTR trafficking and gating. F508del-CFTR mistrafficking may be corrected by acting directly on mutant CFTR itself or by modulating expression/activity of CFTR-interacting proteins, that may thus represent potential drug targets. To evaluate possible candidates for F508del-CFTR rescue, we screened a siRNA library targeting known CFTR interactors. Our analysis identified RNF5 as a protein whose inhibition promoted significant F508del-CFTR rescue and displayed an additive effect with the investigational drug VX-809. Significantly, RNF5 loss in F508del-CFTR transgenic animals ameliorated intestinal malabsorption and concomitantly led to an increase in CFTR activity in intestinal epithelial cells. In addition, we found that RNF5 is differentially expressed in human bronchial epithelia from CF vs. control patients. Our results identify RNF5 as a target for therapeutic modalities to antagonize mutant CFTR proteins.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , DNA-Binding Proteins/genetics , Genetic Association Studies , Phenotype , Sequence Deletion , Ubiquitin-Protein Ligases/genetics , Alleles , Animals , Cell Membrane/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , DNA-Binding Proteins/metabolism , Disease Models, Animal , Duodenum/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Gene Silencing , Genotype , Glycosylation , Humans , Mice, Knockout , RNA Interference , RNA, Small Interfering/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...