Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Mol Cell Proteomics ; 23(5): 100765, 2024 May.
Article in English | MEDLINE | ID: mdl-38608840

ABSTRACT

Pseudomonas putida KT2440 is an important bioplastic-producing industrial microorganism capable of synthesizing the polymeric carbon-rich storage material, polyhydroxyalkanoate (PHA). PHA is sequestered in discrete PHA granules, or carbonosomes, and accumulates under conditions of stress, for example, low levels of available nitrogen. The pha locus responsible for PHA metabolism encodes both anabolic and catabolic enzymes, a transcription factor, and carbonosome-localized proteins termed phasins. The functions of phasins are incompletely understood but genetic disruption of their function causes PHA-related phenotypes. To improve our understanding of these proteins, we investigated the PHA pathways of P.putida KT2440 using three types of experiments. First, we profiled cells grown in nitrogen-limited and nitrogen-excess media using global expression proteomics, identifying sets of proteins found to coordinately increase or decrease within clustered pathways. Next, we analyzed the protein composition of isolated carbonosomes, identifying two new putative components. We carried out physical interaction screens focused on PHA-related proteins, generating a protein-protein network comprising 434 connected proteins. Finally, we confirmed that the outer membrane protein OprL (the Pal component of the Pal-Tol system) localizes to the carbonosome and shows a PHA-related phenotype and therefore is a novel phasin. The combined datasets represent a valuable overview of the protein components of the PHA system in P.putida highlighting the complex nature of regulatory interactions responsive to nutrient stress.


Subject(s)
Lipoproteins , Polyhydroxyalkanoates , Proteomics , Pseudomonas putida , Polyhydroxyalkanoates/metabolism , Pseudomonas putida/metabolism , Pseudomonas putida/genetics , Proteomics/methods , Lipoproteins/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/metabolism , Nitrogen/metabolism , Plant Lectins
2.
ACS Appl Mater Interfaces ; 16(12): 14633-14644, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38483312

ABSTRACT

Osteoarthritis (OA) is the most common form of arthritis, with intra-articular (IA) delivery of therapeutics being the current best option to treat pain and inflammation. However, IA delivery is challenging due to the rapid clearance of therapeutics from the joint and the need for repeated injections. Thus, there is a need for long-acting delivery systems that increase the drug retention time in joints with the capacity to penetrate OA cartilage. As pharmaceutical utility also demands that this is achieved using biocompatible materials that provide colloidal stability, our aim was to develop a nanoparticle (NP) delivery system loaded with the COX-2 inhibitor celecoxib that can meet these criteria. We devised a reproducible and economical method to synthesize the colloidally stable albumin NPs loaded with celecoxib without the use of any of the following conditions: high temperatures at which albumin denaturation occurs, polymer coatings, oils, Class 1/2 solvents, and chemical protein cross-linkers. The spherical NP suspensions were biocompatible, monodisperse with average diameters of 72 nm (ideal for OA cartilage penetration), and they were stable over 6 months at 4 °C. Moreover, the NPs loaded celecoxib at higher levels than those required for the therapeutic response in arthritic joints. For these reasons, they are the first of their kind. Labeled NPs were internalized by primary human articular chondrocytes cultured from the knee joints of OA patients. The NPs reduced the concentration of inflammatory mediator prostaglandin E2 released by the primaries, an indication of retained bioactivity following NP synthesis. Similar results were observed in lipopolysaccharide-stimulated human THP-1 monocytes. The IA administration of these NPs is expected to avoid side-effects associated with oral administration of celecoxib and to maintain a high local concentration in the knee joint over a sustained period. They are now ready for evaluation by IA administration in animal models of OA.


Subject(s)
Nanoparticles , Osteoarthritis , Animals , Humans , Celecoxib/pharmacology , Celecoxib/therapeutic use , Injections, Intra-Articular , Osteoarthritis/drug therapy , Knee Joint , Albumins
3.
J Gen Virol ; 104(2)2023 02.
Article in English | MEDLINE | ID: mdl-36787173

ABSTRACT

A novel proprietary formulation, ViruSAL, has previously been demonstrated to inhibit diverse enveloped viral infections in vitro and in vivo. We evaluated the ability of ViruSAL to inhibit SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) infectivity, using physiologically relevant models of the human bronchial epithelium, to model early infection of the upper respiratory tract. ViruSAL potently inhibited SARS-CoV-2 infection of human bronchial epithelial cells cultured as an air-liquid interface (ALI) model, in a concentration- and time-dependent manner. Viral infection was completely inhibited when ViruSAL was added to bronchial airway models prior to infection. Importantly, ViruSAL also inhibited viral infection when added to ALI models post-infection. No evidence of cellular toxicity was detected in ViruSAL-treated cells at concentrations that completely abrogated viral infectivity. Moreover, intranasal instillation of ViruSAL to a rat model did not result in any toxicity or pathological changes. Together these findings highlight the potential for ViruSAL as a novel and potent antiviral for use within clinical and prophylactic settings.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Rats , Animals , Antiviral Agents/pharmacology , SARS-CoV-2 , Epithelial Cells , Bronchi
4.
BMC Biol ; 19(1): 163, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34407825

ABSTRACT

BACKGROUND: The crAss-like phages are ubiquitous and highly abundant members of the human gut virome that infect commensal bacteria of the order Bacteroidales. Although incapable of lysogeny, these viruses demonstrate long-term persistence in the human gut microbiome, dominating the virome in some individuals. RESULTS: Here we show that rapid phase variation of alternate capsular polysaccharides in Bacteroides intestinalis cultures plays an important role in a dynamic equilibrium between phage sensitivity and resistance, allowing phage and bacteria to multiply in parallel. The data also suggests the role of a concomitant phage persistence mechanism associated with delayed lysis of infected cells, similar to carrier state infection. From an ecological and evolutionary standpoint, this type of phage-host interaction is consistent with the Piggyback-the-Winner model, which suggests a preference towards lysogenic or other "benign" forms of phage infection when the host is stably present at high abundance. CONCLUSION: Long-term persistence of bacteriophage and host could result from mutually beneficial mechanisms driving bacterial strain-level diversity and phage survival in complex environments.


Subject(s)
Bacteriophages , Bacteroides , Bacteria , Bacteroides/virology , Humans , Phase Variation , Phylogeny
5.
Microbiome ; 9(1): 89, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33845877

ABSTRACT

BACKGROUND: The gut phageome comprises a complex phage community of thousands of individual strains, with a few highly abundant bacteriophages. CrAss-like phages, which infect bacteria of the order Bacteroidales, are the most abundant bacteriophage family in the human gut and make an important contribution to an individual's core virome. Based on metagenomic data, crAss-like phages form a family, with four sub-families and ten candidate genera. To date, only three representatives isolated in pure culture have been reported: ΦcrAss001 and two closely related phages DAC15 and DAC17; all are members of the less abundant candidate genus VI. The persistence at high levels of both crAss-like phage and their Bacteroidales hosts in the human gut has not been explained mechanistically, and this phage-host relationship can only be properly studied with isolated phage-host pairs from as many genera as possible. RESULTS: Faeces from a healthy donor with high levels of crAss-like phage was used to initiate a faecal fermentation in a chemostat, with selected antibiotics chosen to inhibit rapidly growing bacteria and selectively enrich for Gram-negative Bacteroidales. This had the objective of promoting the simultaneous expansion of crAss-like phages on their native hosts. The levels of seven different crAss-like phages expanded during the fermentation, indicating that their hosts were also present in the fermenter. The enriched supernatant was then tested against individual Bacteroidales strains isolated from the same faecal sample. This resulted in the isolation of a previously uncharacterised crAss-like phage of candidate genus IV of the proposed Alphacrassvirinae sub-family, ΦcrAss002, that infects the gut commensal Bacteroides xylanisolvens. ΦcrAss002 does not form plaques or spots on lawns of sensitive cells, nor does it lyse liquid cultures, even at high titres. In keeping with the co-abundance of phage and host in the human gut, ΦcrAss002 and Bacteroides xylanisolvens can also co-exist at high levels when co-cultured in laboratory media. CONCLUSIONS: We report the isolation and characterisation of ΦcrAss002, the first representative of the proposed Alphacrassvirinae sub-family of crAss-like phages. ΦcrAss002 cannot form plaques or spots on bacterial lawns but can co-exist with its host, Bacteroides xylanisolvens, at very high levels in liquid culture without impacting on bacterial numbers. Video abstract.


Subject(s)
Bacteriophages , Gastrointestinal Microbiome , Bacteriophages/genetics , Bacteroides , Humans , Phylogeny
6.
Parasitology ; 147(11): 1249-1253, 2020 09.
Article in English | MEDLINE | ID: mdl-32576299

ABSTRACT

New ideas for diagnostics in clinical parasitology are needed to overcome some of the difficulties experienced in the widespread adoption of detection methods for gastrointestinal parasites in livestock. Here we provide an initial evaluation of the performance of a newly developed automated device (Telenostic) to identify and quantify parasitic elements in fecal samples. This study compared the Telenostic device with the McMaster and Mini-FLOTAC for counting of strongyle eggs in a fecal sample. Three bovine fecal samples were examined, in triplicate, on each of the three fecal egg-counting devices. In addition, both manual (laboratory technician) and automated analysis (image analysis algorithm) were performed on the Telenostic device to calculate fecal egg counts (FEC). Overall, there were consistent egg counts reported across the three devices and calculation methods. The Telenostic device compared very favourably to the Mini-FLOTAC and McMaster. Only in sample C, a significant difference (P < 0.05) was observed between the egg counts obtained by Mini-FLOTAC and by the other methods. From this limited dataset it can be concluded that the Telenostic-automated test is comparable to currently used benchmark FEC methods, while improving the workflow, test turn-around time and not requiring trained laboratory personnel to operate or interpret the results.


Subject(s)
Diagnostic Tests, Routine/veterinary , Livestock/parasitology , Animals , Cattle , Diagnostic Tests, Routine/methods , Feces/parasitology , Helminthiasis, Animal , Horse Diseases/parasitology , Horses/parasitology , Intestinal Diseases, Parasitic , Parasite Egg Count/veterinary , Sheep/parasitology , Sheep Diseases/parasitology
7.
Mucosal Immunol ; 12(6): 1316-1326, 2019 11.
Article in English | MEDLINE | ID: mdl-31554901

ABSTRACT

Reactive oxygen species (ROS) generated by NADPH oxidases (NOX/DUOX) provide antimicrobial defense, redox signaling, and gut barrier maintenance. Inactivating NOX variants are associated with comorbid intestinal inflammation in chronic granulomatous disease (CGD; NOX2) and pediatric inflammatory bowel disease (IBD; NOX1); however Nox-deficient mice do not reflect human disease susceptibility. Here we assessed if a hypomorphic patient-relevant CGD mutation will increase the risk for intestinal inflammation in mice. Cyba (p22phox) mutant mice generated low intestinal ROS, while maintaining Nox4 function. The Cyba variant caused profound mucus layer disruption with bacterial penetration into crypts, dysbiosis, and a compromised innate immune response to invading microbes, leading to mortality. Approaches used in treatment-resistant CGD or pediatric IBD such as bone marrow transplantation or oral antibiotic treatment ameliorated or prevented disease in mice. The Cyba mutant mouse phenotype implicates loss of both mucus barrier and efficient innate immune defense in the pathogenesis of intestinal inflammation due to ROS deficiency, supporting a combined-hit model where a single disease variant compromises different cellular functions in interdependent compartments.


Subject(s)
Colitis/enzymology , Colon/enzymology , Cytochrome b Group/metabolism , Intestinal Mucosa/enzymology , Mucus/enzymology , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Colitis/immunology , Colitis/microbiology , Colitis/prevention & control , Colon/drug effects , Colon/immunology , Colon/microbiology , Cytochrome b Group/deficiency , Cytochrome b Group/genetics , Disease Models, Animal , Dysbiosis , Female , Gastrointestinal Microbiome , Immunity, Innate , Immunity, Mucosal , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Mucus/immunology , Mucus/microbiology , Mutation, Missense , NADPH Oxidases/deficiency , NADPH Oxidases/genetics , Signal Transduction
8.
Small ; 15(33): e1901679, 2019 08.
Article in English | MEDLINE | ID: mdl-31267720

ABSTRACT

Nanoparticle-based drug delivery systems have attracted significant interest owing to their promise as tunable platforms that offer improved intracellular release of cargo therapeutics. However, significant challenges remain in maintaining the physiological stability of the mucosal matrix due to the nanoparticle-induced reduction in the matrix diffusivity and promotion of mucin aggregation. Such aggregation also adversely impacts the permeability of the nanoparticles, and thus, diminishes the efficacy of nanoparticle-based formulations. Here, an entirely complementary approach is proposed to the existing nanoparticle functionalization methods to address these challenges by using trehalose, a naturally occurring disaccharide that offers exceptional protein stabilization. Plasmon-enhanced Raman spectroscopy and far-red fluorescence emission of the plasmonic silver nanoparticulate clusters are harnessed to create a unique dual-functional, aggregating, and imaging agent that obviates the need of an additional reporter to investigate mucus-nanoparticle interactions. These spectroscopy-based density mapping tools uncover the mechanism of mucus-nanoparticle interactions and establish the protective role of trehalose microenvironment in minimizing the nanoparticle aggregation. Thus, in contrast to the prevailing belief, these results demonstrate that nonfunctionalized nanoparticles may rapidly penetrate through mucus barriers, and by leveraging the bioprotectant attributes of trehalose, an in vivo milieu for efficient mucosal drug delivery can be generated.


Subject(s)
Metal Nanoparticles/chemistry , Mucus/metabolism , Spectrum Analysis, Raman/methods , Trehalose/pharmacokinetics , Animals , Drug Delivery Systems , Humans , Jejunum/metabolism , Silver/chemistry , Swine
9.
ACS Omega ; 3(5): 5926-5930, 2018 May 31.
Article in English | MEDLINE | ID: mdl-30023932

ABSTRACT

Attaining capability of label-free optical characterization of tissues will offer methodological advancement and possibilities for early clinical detection, which is of paramount importance in treating patients under clinical setups, for example, cancer. Here, we demonstrate the potential of autofluorescence exhibited by tissues as an enabling microscopic strategy to achieve high-resolution imagery data offering a wealth of clinically relevant information including possibility of three-dimensional rendering. Furthermore, we elucidate the use of analytic tools to extract numerical read-outs from such data with further implications in histopathology, pharmaceutics, toxicology, and screening purposes. This study summarizes the results obtained through a systematic autofluorescence-based investigation on murine and porcine gut tissues with an example of applying the technique in nanotoxicology. The study provides with a methodological roadmap toward developing a fast, effective, and robust platform enabling in-depth optical characterization of tissues.

10.
J Colloid Interface Sci ; 526: 419-428, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29763820

ABSTRACT

Attempts to deal with the problem of detrimental biofilms using nanoparticle technologies have generally focussed on exploiting biocidal approaches. However, it is now recognised that biofilm matrix-components may be targets for the disruption or dispersion of biofilms. Here, we show that the functionalization of gold nanoparticles with the enzyme, proteinase-K (PK) led to both biocidal and matrix disruption effects within Pseudomonas fluorescens biofilms and released cells. This study highlights the potential mechanisms underpinning the properties of Proteinase-K functionalized gold nanoparticles. With the emergence of biocide-resistant biofilm-forming organisms, novel nanoparticle strategies may provide the ideal solution for disrupting and inactivating biofilm cells, thereby minimising the use of biocides or antibiotics.


Subject(s)
Biofilms/growth & development , Endopeptidase K , Enzymes, Immobilized , Gold , Metal Nanoparticles/chemistry , Pseudomonas fluorescens/physiology , Endopeptidase K/chemistry , Endopeptidase K/pharmacology , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/pharmacology , Gold/chemistry , Gold/pharmacology
11.
Ther Deliv ; 9(6): 419-433, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29722632

ABSTRACT

AIM: To investigate how surface charge and hydrophilicity affect the mucopermeation of liposomes across intestinal mucus. METHODOLOGY: Rhodamine-labeled liposomes (∼120-130 nm) with different surface charges were investigated for their capacity to flux across fresh porcine jejunal mucus in a microchannel device. Fluorescent microscopy and tracking analysis were used to measure liposome movement, while fluorescence lifetime imaging microscopy was utilized to determine mucus pH. RESULTS: Mucopermeation was dependent on hydrophilicity and surface charge - anionic liposomes permeated more than cationic. The most cationic liposomal prototype agglomerated mucus. Presence of Na+, K+ and Mg2+ increased both speed and straightness of the pathways for all prototypes. Cationic but not anionic liposomes caused acidification (pH 2.5). CONCLUSION: Acidification caused by cationic liposomes explains their ability to interfere with mucus stability. Surface charge of liposomes strongly influences mucopermeation capability.


Subject(s)
Drug Carriers/pharmacokinetics , Intestinal Mucosa/metabolism , Jejunum/metabolism , Mucus/metabolism , Animals , Anions/chemistry , Anions/pharmacokinetics , Cations/chemistry , Cations/pharmacokinetics , Drug Carriers/chemistry , Hydrogen-Ion Concentration , Intestinal Absorption , Intravital Microscopy/methods , Liposomes , Microscopy, Fluorescence/methods , Models, Animal , Mucus/diagnostic imaging , Permeability , Rhodamines/chemistry , Swine
12.
J Biol Chem ; 293(23): 8750-8760, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29674345

ABSTRACT

Protein-protein interactions critically regulate many biological systems, but quantifying functional assembly of multipass membrane complexes in their native context is still challenging. Here, we combined modeling-assisted protein modification and information from human disease variants with a minimal-size fusion tag, split-luciferase-based approach to probe assembly of the NADPH oxidase 4 (NOX4)-p22phox enzyme, an integral membrane complex with unresolved structure, which is required for electron transfer and generation of reactive oxygen species (ROS). Integrated analyses of heterodimerization, trafficking, and catalytic activity identified determinants for the NOX4-p22phox interaction, such as heme incorporation into NOX4 and hot spot residues in transmembrane domains 1 and 4 in p22phox Moreover, their effect on NOX4 maturation and ROS generation was analyzed. We propose that this reversible and quantitative protein-protein interaction technique with its small split-fragment approach will provide a protein engineering and discovery tool not only for NOX research, but also for other intricate membrane protein complexes, and may thereby facilitate new drug discovery strategies for managing NOX-associated diseases.


Subject(s)
NADPH Oxidase 4/metabolism , NADPH Oxidases/metabolism , Protein Interaction Mapping/methods , Protein Interaction Maps , Animals , COS Cells , Cell Membrane/chemistry , Cell Membrane/metabolism , Chlorocebus aethiops , Heme/chemistry , Heme/metabolism , Humans , Models, Molecular , NADPH Oxidase 4/chemistry , NADPH Oxidases/chemistry , Protein Domains , Protein Multimerization , Reactive Oxygen Species/metabolism
13.
Nat Commun ; 7: 10855, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26927507

ABSTRACT

Bioresponsive NIR-fluorophores offer the possibility for continual visualization of dynamic cellular processes with added potential for direct translation to in vivo imaging. Here we show the design, synthesis and lysosome-responsive emission properties of a new NIR fluorophore. The NIR fluorescent probe design differs from typical amine functionalized lysosomotropic stains with off/on fluorescence switching controlled by a reversible phenol/phenolate interconversion. Emission from the probe is shown to be highly selective for the lysosomes in co-imaging experiments using a HeLa cell line expressing the lysosomal-associated membrane protein 1 fused to green fluorescent protein. The responsive probe is capable of real-time continuous imaging of fundamental cellular processes such as endocytosis, lysosomal trafficking and efflux in 3D and 4D. The advantage of the NIR emission allows for direct translation to in vivo tumour imaging, which is successfully demonstrated using an MDA-MB-231 subcutaneous tumour model. This bioresponsive NIR fluorophore offers significant potential for use in live cellular and in vivo imaging, for which currently there is a deficit of suitable molecular fluorescent tools.


Subject(s)
Fluorescent Dyes/chemistry , Lysosomes/metabolism , Optical Imaging/methods , Spectroscopy, Near-Infrared/methods , Adenocarcinoma/metabolism , Animals , Breast Neoplasms , Cell Communication , Cell Line, Tumor , Female , Fluorescent Dyes/chemical synthesis , Humans , Mice , Microscopy, Fluorescence , Molecular Structure , Neoplasms, Experimental/metabolism
14.
Methods Mol Biol ; 1379: 181-8, 2016.
Article in English | MEDLINE | ID: mdl-26608300

ABSTRACT

The 3D culture is advantageous in reflecting the in vivo condition compared to the 2D culture; however, imaging 3D-cultured cells may be a challenge due to technical restrictions. Recent development of confocal spinning disc microscope system as well as sophisticated software has enabled us to monitor dynamism of cell movement in multiple dimensions. Here we describe the method for time-lapse imaging of 3D-cultured cancer cells co-cultured with non-cancerous cells and discuss current limitations and future perspectives.


Subject(s)
Coculture Techniques/methods , Microscopy, Confocal/methods , Cell Line, Tumor , Cell Survival , Humans , Time Factors
15.
PLoS One ; 10(10): e0140209, 2015.
Article in English | MEDLINE | ID: mdl-26485569

ABSTRACT

We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.


Subject(s)
Algorithms , Computational Biology/methods , Image Processing, Computer-Assisted/methods , Software , Cell Movement , Cell Tracking/instrumentation , Cell Tracking/methods , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , HeLa Cells , Humans , Internet , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Confocal , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reproducibility of Results , Time-Lapse Imaging/methods
16.
J R Soc Interface ; 12(108): 20150015, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26040594

ABSTRACT

Active motion of living organisms and artificial self-propelling particles has been an area of intense research at the interface of biology, chemistry and physics. Significant progress in understanding these phenomena has been related to the observation that dynamic self-organization in active systems has much in common with ordering in equilibrium condensed matter such as spontaneous magnetization in ferromagnets. The velocities of active particles may behave similar to magnetic dipoles and develop global alignment, although interactions between the individuals might be completely different. In this work, we show that the dynamics of active particles in external fields can also be described in a way that resembles equilibrium condensed matter. It follows simple general laws, which are independent of the microscopic details of the system. The dynamics is revealed through hysteresis of the mean velocity of active particles subjected to a periodic orienting field. The hysteresis is measured in computer simulations and experiments on unicellular organisms. We find that the ability of the particles to follow the field scales with the ratio of the field variation period to the particles' orientational relaxation time, which, in turn, is related to the particle self-propulsion power and the energy dissipation rate. The collective behaviour of the particles due to aligning interactions manifests itself at low frequencies via increased persistence of the swarm motion when compared with motion of an individual. By contrast, at high field frequencies, the active group fails to develop the alignment and tends to behave like a set of independent individuals even in the presence of interactions. We also report on asymptotic laws for the hysteretic dynamics of active particles, which resemble those in magnetic systems. The generality of the assumptions in the underlying model suggests that the observed laws might apply to a variety of dynamic phenomena from the motion of synthetic active particles to crowd or opinion dynamics.


Subject(s)
Models, Theoretical
17.
Cancer Cell Int ; 14(1): 108, 2014.
Article in English | MEDLINE | ID: mdl-25379014

ABSTRACT

BACKGROUND: The cancer microenvironment has a strong impact on the growth and dynamics of cancer cells. Conventional 2D culture systems, however, do not reflect in vivo conditions, impeding detailed studies of cancer cell dynamics. This work aims to establish a method to reveal the interaction of cancer and normal epithelial cells using 3D time-lapse. METHODS: GFP-labelled breast cancer cells, MDA-MB-231, were co-cultured with mCherry-labelled non-cancerous epithelial cells, MDCK, in a gel matrix. In the 3D culture, the epithelial cells establish a spherical morphology (epithelial sphere) thus providing cancer cells with accessibility to the basal surface of epithelia, similar to the in vivo condition. Cell movement was monitored using time-lapse analyses. Ultrastructural, immunocytochemical and protein expression analyses were also performed following the time-lapse study. RESULTS: In contrast to the 2D culture system, whereby most MDA-MB-231 cells exhibit spindle-shaped morphology as single cells, in the 3D culture the MDA-MB-231 cells were found to be single cells or else formed aggregates, both of which were motile. The single MDA-MB-231 cells exhibited both round and spindle shapes, with dynamic changes from one shape to the other, visible within a matter of hours. When co-cultured with epithelial cells, the MDA-MB-231 cells displayed a strong attraction to the epithelial spheres, and proceeded to surround and engulf the epithelial cell mass. The surrounded epithelial cells were eventually destroyed, becoming debris, and were taken into the MDA-MB-231 cells. However, when there was a relatively large population of normal epithelial cells, the MDA-MB-231 cells did not engulf the epithelial spheres effectively, despite repeated contacts. MDA-MB-231 cells co-cultured with a large number of normal epithelial cells showed reduced expression of monocarboxylate transporter-1, suggesting a change in the cell metabolism. A decreased level of gelatin-digesting ability as well as reduced production of matrix metaroproteinase-2 was also observed. CONCLUSIONS: This culture method is a powerful technique to investigate cancer cell dynamics and cellular changes in response to the microenvironment. The method can be useful for various aspects such as; different combinations of cancer and non-cancer cell types, addressing the organ-specific affinity of cancer cells to host cells, and monitoring the cellular response to anti-cancer drugs.

18.
J Microsc ; 256(3): 197-207, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25186063

ABSTRACT

Understanding the dynamic properties of cellular proteins in live cells and in real time is essential to delineate their function. In this context, we introduce the Fluorescence Recovery After Photobleaching-Photoactivation unit (Andor) combined with the Nikon Eclipse Ti E Spinning Disk (Andor) confocal microscope as an advantageous and robust platform to exploit the properties of the Dendra2 photoconvertible fluorescent protein (Evrogen) and analyse protein subcellular trafficking in living cells. A major advantage of the spinning disk confocal is the rapid acquisition speed, enabling high temporal resolution of cellular processes. Furthermore, photoconversion and imaging are less invasive on the spinning disk confocal as the cell exposition to illumination power is reduced, thereby minimizing photobleaching and increasing cell viability. We have tested this commercially available platform using experimental settings adapted to track the migration of fast trafficking proteins such as UBC9, Fibrillarin and have successfully characterized their differential motion between subnuclear structures. We describe here step-by-step procedures, with emphasis on cellular imaging parameters, to successfully perform the dynamic imaging and photoconversion of Dendra2-fused proteins at high spatial and temporal resolutions necessary to characterize the trafficking pathways of proteins.


Subject(s)
Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Protein Transport/physiology , Proteins/metabolism , Cell Line, Tumor , Cell Survival/physiology , HeLa Cells , Humans , Lighting/methods , Photobleaching
19.
PLoS One ; 9(2): e87736, 2014.
Article in English | MEDLINE | ID: mdl-24498366

ABSTRACT

The molecular determinants of abnormal propagation of action potentials along axons and ectopic conductance in demyelinating diseases of the central nervous system, like multiple sclerosis (MS), are poorly defined. Widespread interruption of myelin occurs in several mouse models of demyelination, rendering them useful for research. Herein, considerable myelin loss is shown in the optic nerves of cuprizone-treated demyelinating mice. Immuno-fluorescence confocal analysis of the expression and distribution of voltage-activated K⁺ channels (K(V)1.1 and 1.2 α subunits) revealed their spread from typical juxta-paranodal (JXP) sites to nodes in demyelinated axons, albeit with a disproportionate increase in the level of K(V)1.1 subunit. Functionally, in contrast to monophasic compound action potentials (CAPs) recorded in controls, responses derived from optic nerves of cuprizone-treated mice displayed initial synchronous waveform followed by a dispersed component. Partial restoration of CAPs by broad spectrum (4-aminopyridine) or K(V)1.1-subunit selective (dendrotoxin K) blockers of K⁺ currents suggest enhanced K(V)1.1-mediated conductance in the demyelinated optic nerve. Biophysical profiling of K⁺ currents mediated by recombinant channels comprised of different K(V)1.1 and 1.2 stoichiometries revealed that the enrichment of K(V)1 channels K(V)1.1 subunit endows a decrease in the voltage threshold and accelerates the activation kinetics. Together with the morphometric data, these findings provide important clues to a molecular basis for temporal dispersion of CAPs and reduced excitability of demyelinated optic nerves, which could be of potential relevance to the patho-physiology of MS and related disorders.


Subject(s)
Axons/pathology , Cuprizone/toxicity , Demyelinating Diseases/physiopathology , Kv1.1 Potassium Channel/metabolism , Kv1.2 Potassium Channel/metabolism , Myelin Sheath/pathology , Optic Nerve/pathology , Action Potentials , Animals , Axons/metabolism , Brain/metabolism , Brain/pathology , Demyelinating Diseases/chemically induced , Disease Models, Animal , Immunoenzyme Techniques , Mice , Mice, Inbred C57BL , Monoamine Oxidase Inhibitors/toxicity , Myelin Sheath/metabolism , Optic Nerve/metabolism
20.
Biomaterials ; 35(9): 2543-57, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24429386

ABSTRACT

Gold nanomaterials are currently raising a significant interest for human welfare in the field of clinical diagnosis, therapeutics for chronic pathologies, as well as of many other biomedical applications. In particular, gold nanomaterials are becoming a promising technology for developing novel approaches and treatments against widespread societal diseases such as cancer. In this study, we investigated the potential of proprietary gold nanoboxes (AuNBs) as carriers for their perspective translation into multifunctional, pre-clinical nano-enabled systems for personalized medicine approaches against lung cancer. A safe-by-design, tiered approach, with systematic tests conducted in the early phases on uncoated AuNBs and more focused testing on the coated, drug-loaded nanomaterial toward the end, was adopted. Our results showed that uncoated AuNBs could effectively penetrate into human lung adenocarcinoma (A549) cells when in simple (mono-cultures) or complex (co- and three-dimensional-cultures) in vitro microenvironments mimicking the alveolar region of human lungs. Uncoated AuNBs were biologically inert in A549 cells and demonstrated signs of biodegradability. Concurrently, preliminary data revealed that coated, drug-loaded AuNBs could efficiently deliver a chemotherapeutic agent to A549 cells, corroborating the hypothesis that AuNBs could be used in the future for the development of personalized nano-enabled systems for lung cancer treatment.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems/methods , Endocytosis , Gold/chemistry , Nanostructures/chemistry , Neoplasms/metabolism , Biocompatible Materials/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Coculture Techniques , Gelatin/chemistry , Gold/toxicity , Humans , Nanostructures/toxicity , Nanostructures/ultrastructure , Neoplasms/pathology , Neoplasms/ultrastructure , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...