Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Plant Biol ; 48(5): 469-482, 2021 04.
Article in English | MEDLINE | ID: mdl-33423738

ABSTRACT

Leaves in different positions respond differently to dynamic fluctuations in light availability, temperature and to multiple environmental stresses. The current hypothesis states that elevated atmospheric CO2 (e[CO2]) can compensate for the negative effects of water scarcity regarding leaf gas exchanges and coffee bean quality traits over the canopy vertical profile, in interactions with light and temperature microclimate during the two final stages of berry development. Responses of Coffea arabica L. were observed in the 5th year of a free air CO2 enrichment experiment (FACE) under water-limited rainfed conditions. The light dependent leaf photosynthesis curves (A/PAR) were modelled for leaves sampled from vertical profile divided into four 50-cm thick layers. e[CO2] significantly increased gross photosynthesis (AmaxGross), the apparent quantum yield efficiency, light compensation point, light saturation point (LSP) and dark respiration rate (Rd). As a specific stage response, considering berry ripening, all parameters calculated from A/PAR were insensitive to leaf position over the vertical profile. Lack of a progressive increase in AmaxGross and LSP was observed over the whole canopy profile in both stages, especially in the two lowest layers, indicating leaf plasticity to light. Negative correlation of Rd to leaf temperature (TL) was observed under e[CO2] in both stages. Under e[CO2], stomatal conductance was also negatively correlated with TL, reducing leaf transpiration and Rd even with increasing TL. This indicated coffee leaf acclimation to elevated temperatures under e[CO2] and water restriction. The e[CO2] attenuation occurred under water restriction, especially in A and water use efficiency, in both stages, with the exception of the lowest two layers. Under e[CO2], coffee produced berries in moderate- and high light level layers, with homogeneous distribution among them, contrasted to the heterogeneous distribution under actual CO2. e[CO2] led to increased caffeine content in the highest layer, with reduction of chlorogenic acid and lipids under moderate light and to raised levels of sugar in the shaded low layer. The ability of coffee to respond to e[CO2] under limited soil water was expressed through the integrated individual leaf capacities to use the available light and water, resulting in final plant investments in new reproductive structures in moderate and high light level layers.


Subject(s)
Carbon Dioxide , Coffee , Photosynthesis , Plant Leaves , Water
2.
Sci Rep ; 8(1): 465, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323254

ABSTRACT

Lipids, including the diterpenes cafestol and kahweol, are key compounds that contribute to the quality of coffee beverages. We determined total lipid content and cafestol and kahweol concentrations in green beans and genotyped 107 Coffea arabica accessions, including wild genotypes from the historical FAO collection from Ethiopia. A genome-wide association study was performed to identify genomic regions associated with lipid, cafestol and kahweol contents and cafestol/kahweol ratio. Using the diploid Coffea canephora genome as a reference, we identified 6,696 SNPs. Population structure analyses suggested the presence of two to three groups (K = 2 and K = 3) corresponding to the east and west sides of the Great Rift Valley and an additional group formed by wild accessions collected in western forests. We identified 5 SNPs associated with lipid content, 4 with cafestol, 3 with kahweol and 9 with cafestol/kahweol ratio. Most of these SNPs are located inside or near candidate genes related to metabolic pathways of these chemical compounds in coffee beans. In addition, three trait-associated SNPs showed evidence of directional selection among cultivated and wild coffee accessions. Our results also confirm a great allelic richness in wild accessions from Ethiopia, especially in accessions originating from forests in the west side of the Great Rift Valley.


Subject(s)
Coffea/chemistry , Diterpenes/analysis , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Biosynthetic Pathways , Coffea/genetics , Diterpenes/metabolism , Lipids/analysis , Lipids/biosynthesis , Plant Proteins/genetics , Quantitative Trait Loci , Sequence Analysis, DNA/methods
3.
Plant Physiol Biochem ; 111: 340-347, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28002787

ABSTRACT

Lipids are among the major chemical compounds present in coffee beans, and they affect the flavor and aroma of the coffee beverage. Coffee oil is rich in kaurene diterpene compounds, mainly cafestol (CAF) and kahweol (KAH), which are related to plant defense mechanisms and to nutraceutical and sensorial beverage characteristics. Despite their importance, the final steps of coffee diterpenes biosynthesis remain unknown. To understand the molecular basis of coffee diterpenes biosynthesis, we report the content dynamics of CAF and KAH in several Coffea arabica tissues and the transcriptional analysis of cytochrome P450 genes (P450). We measured CAF and KAH concentrations in leaves, roots, flower buds, flowers and fruit tissues at seven developmental stages (30-240 days after flowering - DAF) using HPLC. Higher CAF levels were detected in flower buds and flowers when compared to fruits. In contrast, KAH concentration increased along fruit development, peaking at 120 DAF. We did not detect CAF or KAH in leaves, and higher amounts of KAH than CAF were detected in roots. Using P450 candidate genes from a coffee EST database, we performed RT-qPCR transcriptional analysis of leaves, flowers and fruits at three developmental stages (90, 120 and 150 DAF). Three P450 genes (CaCYP76C4, CaCYP82C2 and CaCYP74A1) had transcriptional patterns similar to CAF concentration and two P450 genes (CaCYP71A25 and CaCYP701A3) have transcript accumulation similar to KAH concentration. These data warrant further investigation of these P450s as potential candidate genes involved in the final stages of the CAF and KAH biosynthetic pathways.


Subject(s)
Coffea/genetics , Cytochrome P-450 Enzyme System/genetics , Diterpenes/metabolism , Flowers/enzymology , Fruit/growth & development , Plant Leaves/enzymology , Plant Roots/enzymology , Transcription, Genetic , Chromatography, High Pressure Liquid , Coffea/growth & development , Diterpenes/analysis , Flowers/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genetic Association Studies , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...