Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Metab ; 75: 101775, 2023 09.
Article in English | MEDLINE | ID: mdl-37451343

ABSTRACT

OBJECTIVE: Dextromethorphan (DXM) is a commonly used antitussive medication with positive effects in people with type 2 diabetes mellitus, since it increases glucose tolerance and protects pancreatic islets from cell death. However, its use as an antidiabetic medication is limited due to its central nervous side effects and potential use as a recreational drug. Therefore, we recently modified DXM chemically to reduce its blood-brain barrier (BBB) penetration and central side effects. However, our best compound interacted with the cardiac potassium channel hERG (human ether-à-go-go-related gene product) and the µ-opioid receptor (MOR). Thus, the goal of this study was to reduce the interaction of our compound with these targets, while maintaining its beneficial properties. METHODS: Receptor and channel binding assays were conducted to evaluate the drug safety of our DXM derivative. Pancreatic islets were used to investigate the effect of the compound on insulin secretion and islet cell survival. Via liquor collection from the brain and a behavioral assay, we analyzed the BBB permeability. By performing intraperitoneal and oral glucose tolerance tests as well as pharmacokinetic analyses, the antidiabetic potential and elimination half-life were investigated, respectively. To analyze the islet cell-protective effect, we used fluorescence microscopy as well as flow cytometric analyses. RESULTS: Here, we report the design and synthesis of an optimized, orally available BBB-impermeable DXM derivative with lesser binding to hERG and MOR than previous ones. We also show that the new compound substantially enhances glucose-stimulated insulin secretion (GSIS) from mouse and human islets and glucose tolerance in mice as well as protects pancreatic islets from cell death induced by reactive oxygen species and that it amplifies the effects of tirzepatide on GSIS and islet cell viability. CONCLUSIONS: We succeeded to design and synthesize a novel morphinan derivative that is BBB-impermeable, glucose-lowering and islet cell-protective and has good drug safety despite its morphinan and imidazole structures.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , Morphinans , Mice , Humans , Animals , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Morphinans/metabolism , Morphinans/pharmacology , Islets of Langerhans/metabolism , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Oxidative Stress
2.
Cell Chem Biol ; 28(10): 1474-1488.e7, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34118188

ABSTRACT

Dextromethorphan (DXM) acts as cough suppressant via its central action. Cell-protective effects of this drug have been reported in peripheral tissues, making DXM potentially useful for treatment of several common human diseases, such as type 2 diabetes mellitus (T2DM). Pancreatic islets are among the peripheral tissues that positively respond to DXM, and anti-diabetic effects of DXM were observed in two placebo-controlled, randomized clinical trials in humans with T2DM. Since these effects were associated with central side effects, we here developed chemical derivatives of DXM that pass the blood-brain barrier to a significantly lower extent than the original drug. We show that basic nitrogen-containing residues block central adverse events of DXM without reducing its anti-diabetic effects, including the protection of human pancreatic islets from cell death. These results show how to chemically modify DXM, and possibly other morphinans, as to exclude central side effects, while targeting peripheral tissues, such as pancreatic islets.


Subject(s)
Blood Glucose/analysis , Dextromethorphan/pharmacology , Hypoglycemic Agents/pharmacology , Islets of Langerhans/drug effects , Animals , Apoptosis/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Calcium/metabolism , Dextromethorphan/analogs & derivatives , Dextromethorphan/metabolism , Dextromethorphan/therapeutic use , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/pathology , Drug Design , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/therapeutic use , Insulin/blood , Insulin/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Male , Membrane Potentials/drug effects , Mice, Inbred C57BL
3.
Exp Dermatol ; 25(1): 56-61, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26440058

ABSTRACT

Human skin undergoes morphological, biochemical and functional modifications during the ageing process. This study was designed to produce a 3-dimensional (3D) skin equivalent in vitro reflecting some aspects of in vivo aged skin. Reconstructed skin was generated by co-culturing skin fibroblasts and keratinocytes on a collagen-glycosaminoglycan-chitosan scaffold, and ageing was induced by the exposition of fibroblasts to Mitomycin-C (MMC). Recently published data showed that MMC treatment resulted in a drug-induced accelerated senescence (DIAS) in human dermal fibroblast cultures. Next to established ageing markers, histological changes were analysed in comparison with in vivo aged skin. In aged epidermis, the filaggrin expression is reduced in vivo and in vitro. Furthermore, in dermal tissue, the amount of elastin and collagen is lowered in aged skin in vivo as well as after the treatment of 3D skin equivalents with MMC in vitro. Our results show histological signs and some aspects of ageing in a 3D skin equivalent in vitro, which mimics aged skin in vivo.


Subject(s)
Skin Aging , Skin/metabolism , Tissue Engineering/methods , Tissue Scaffolds , Adult , Aged , Cells, Cultured , Cellular Senescence/drug effects , Child , Chitosan/chemistry , Coculture Techniques , Collagen/chemistry , Elastin/biosynthesis , Elastin/chemistry , Epidermis/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Filaggrin Proteins , Glycosaminoglycans/chemistry , Humans , Intermediate Filament Proteins/metabolism , Keratinocytes/cytology , Male , Mitomycin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...