Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 379(6630): 389-393, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36701463

ABSTRACT

Photon emission is the hallmark of light-matter interaction and the foundation of photonic quantum science, enabling advanced sources for quantum communication and computing. Although single-emitter radiation can be tailored by the photonic environment, the introduction of multiple emitters extends this picture. A fundamental challenge, however, is that the radiative dipole-dipole coupling rapidly decays with spatial separation, typically within a fraction of the optical wavelength. We realize distant dipole-dipole radiative coupling with pairs of solid-state optical quantum emitters embedded in a nanophotonic waveguide. We dynamically probe the collective response and identify both super- and subradiant emission as well as means to control the dynamics by proper excitation techniques. Our work constitutes a foundational step toward multiemitter applications for scalable quantum-information processing.

2.
Opt Express ; 30(21): 37595-37602, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258345

ABSTRACT

We report a method for integrating GaAs waveguide circuits containing self-assembled quantum dots on a Si/SiO2 wafer, using die-to-wafer bonding. The large refractive-index contrast between GaAs and SiO2 enables fabricating single-mode waveguides without compromising the photon-emitter coupling. Anti-bunched emission from individual quantum dots is observed, along with a waveguide propagation loss <7 dB/mm, which is comparable with the performance of suspended GaAs circuits. These results enable the integration of quantum emitters with different material platforms, towards the realization of scalable quantum photonic integrated circuits.

3.
Phys Rev Lett ; 128(23): 233602, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35749189

ABSTRACT

Deterministic sources of multiphoton entanglement are highly attractive for quantum information processing but are challenging to realize experimentally. In this Letter, we demonstrate a route toward a scaleable source of time-bin encoded Greenberger-Horne-Zeilinger and linear cluster states from a solid-state quantum dot embedded in a nanophotonic crystal waveguide. By utilizing a self-stabilizing double-pass interferometer, we measure a spin-photon Bell state with (67.8±0.4)% fidelity and devise steps for significant further improvements. By employing strict resonant excitation, we demonstrate a photon indistinguishability of (95.7±0.8)%, which is conducive to fusion of multiple cluster states for scaling up the technology and producing more general graph states.

4.
Phys Rev Lett ; 126(1): 013602, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33480775

ABSTRACT

Solid-state quantum dots are promising candidates for efficient light-matter interfaces connecting internal spin degrees of freedom to the states of emitted photons. However, selection rules prevent the combination of efficient spin control and optical cyclicity in this platform. By utilizing a photonic crystal waveguide we here experimentally demonstrate optical cyclicity up to ≈15 through photonic state engineering while achieving high fidelity spin initialization and coherent optical spin control. These capabilities pave the way towards scalable multiphoton entanglement generation and on-chip spin-photon gates.

5.
Sci Adv ; 6(50)2020 Dec.
Article in English | MEDLINE | ID: mdl-33298444

ABSTRACT

Photonic qubits are key enablers for quantum information processing deployable across a distributed quantum network. An on-demand and truly scalable source of indistinguishable single photons is the essential component enabling high-fidelity photonic quantum operations. A main challenge is to overcome noise and decoherence processes to reach the steep benchmarks on generation efficiency and photon indistinguishability required for scaling up the source. We report on the realization of a deterministic single-photon source featuring near-unity indistinguishability using a quantum dot in an "on-chip" planar nanophotonic waveguide circuit. The device produces long strings of >100 single photons without any observable decrease in the mutual indistinguishability between photons. A total generation rate of 122 million photons per second is achieved, corresponding to an on-chip source efficiency of 84%. These specifications of the single-photon source are benchmarked for boson sampling and found to enable scaling into the regime of quantum advantage.

6.
Nat Commun ; 11(1): 3782, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32728025

ABSTRACT

A deterministic source of coherent single photons is an enabling device for quantum information processing. Quantum dots in nanophotonic structures have been employed as excellent sources of single photons with the promise of scaling up towards multiple photons and emitters. It remains a challenge to implement deterministic resonant optical excitation of the quantum dot required for generating coherent single photons, since residual light from the excitation laser should be suppressed without compromising source efficiency and scalability. Here, we present a planar nanophotonic circuit that enables deterministic pulsed resonant excitation of quantum dots using two orthogonal waveguide modes for separating the laser and the emitted photons. We report a coherent and stable single-photon source that simultaneously achieves high-purity (g(2)(0) = 0.020 ± 0.005), high-indistinguishability (V = 96 ± 2%), and >80% coupling efficiency into the waveguide. Such 'plug-and-play' single-photon source can be integrated with on-chip optical networks implementing photonic quantum processors.

7.
Chemistry ; 25(72): 16550-16554, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31680359

ABSTRACT

A method for the selective deuteration of polyfunctional organic molecules using catalytic amounts of [RuCl2 (PPh3 )3 ] and D2 O as a deuterium source is presented. Through variation of additives like CuI, KOH, and various amounts of zinc powder, orthogonal chemoselectivities in the deuteration process are observed. Mechanistic investigation indicates the presence of different, defined Ru-complexes under the given specific conditions.

8.
Sci Rep ; 5: 16812, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26578287

ABSTRACT

The interaction between intersubband resonances (ISRs) and metamaterial microcavities constitutes a strongly coupled system where new resonances form that depend on the coupling strength. Here we present experimental evidence of strong coupling between the cavity resonance of a terahertz metamaterial and the ISR in a high electron mobility transistor (HEMT) structure. The device is electrically switched from an uncoupled to a strongly coupled regime by tuning the ISR with epitaxially grown transparent gate. The asymmetric potential in the HEMT structure enables ultrawide electrical tuning of ISR, which is an order of magnitude higher as compared to an equivalent square well. For a single heterojunction with a triangular confinement, we achieve an avoided splitting of 0.52 THz, which is a significant fraction of the bare intersubband resonance at 2 THz.

9.
Soft Matter ; 10(33): 6147-60, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-24942348

ABSTRACT

A novel class of symmetric amphi- and triphilic (hydrophilic, lipophilic, fluorophilic) block copolymers has been investigated with respect to their interactions with lipid membranes. The amphiphilic triblock copolymer has the structure PGMA(20)-PPO(34)-PGMA(20) (GP) and it becomes triphilic after attaching perfluoroalkyl moieties (F9) to either end which leads to F(9)-PGMA(20)-PPO(34)-PGMA(20)-F(9) (F-GP). The hydrophobic poly(propylene oxide) (PPO) block is sufficiently long to span a lipid bilayer. The poly(glycerol monomethacrylate) (PGMA) blocks have a high propensity for hydrogen bonding. The hydrophobic and lipophobic perfluoroalkyl moieties have the tendency to phase segregate in aqueous as well as in hydrocarbon environments. We performed differential scanning calorimetry (DSC) measurements on polymer bound lipid vesicles under systematic variation of the bilayer thickness, the nature of the lipid headgroup, and the polymer concentration. The vesicles were composed of phosphatidylcholines (DMPC, DPPC, DAPC, DSPC) or phosphatidylethanolamines (DMPE, DPPE, POPE). We showed that GP as well as F-GP binding have membrane stabilizing and destabilizing components. PPO and F9 blocks insert into the hydrophobic part of the membrane concomitantly with PGMA block adsorption to the lipid headgroup layer. The F9 chains act as additional membrane anchors. The insertion of the PPO blocks of both GP and F-GP could be proven by 2D-NOESY NMR spectroscopy. By fluorescence microscopy we show that F-GP binding increases the porosity of POPC giant unilamellar vesicles (GUVs), allowing the influx of water soluble dyes as well as the translocation of the complete triphilic polymer and its accumulation at the GUV surface. These results open a new route for the rational design of membrane systems with specific properties.


Subject(s)
Lipid Bilayers/chemistry , Lipids/chemistry , Polymers/chemistry , Polymethacrylic Acids/chemistry , Propylene Glycols/chemistry , Acrylates/chemistry , Adsorption , Calorimetry, Differential Scanning , Chromatography, High Pressure Liquid , Hydrocarbons/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Microscopy, Confocal , Rhodamines/chemistry , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...