Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 43(1): 297-302, 2014 Jan.
Article in English | MEDLINE | ID: mdl-25602563

ABSTRACT

Flue gas desulfurization (FGD) gypsum is a byproduct of coal-fired power plants. Its application to agricultural fields may increase water infiltration, reduce soil erosion, and decrease nutrient losses from applications of animal manures. It may also reduce fecal bacterial contamination of surface waters. We tested the hypothesis that FGD gypsum applications would decrease the load of and the fecal indicator bacterium from poultry litter applications. Two rainfall simulation experiments were undertaken: one in spring 2009 and one in spring 2011. Six treatments consisted of four rates of FGD gypsum (0, 2.2, 4.5, and 9.0 Mg ha) with poultry litter (13.5 Mg ha and two controls) in a randomized, complete-block design with three replications. Each replicate 4- × 6-m plot contained a single 1- × 2-m subplot that was delineated by metal plates and a flume that captured total overland flow or runoff. Rainfall was applied at ∼64 mm h. Volume of overland runoff was measured and subsampled for analysis every 10 min for 1 h. Flow-weighted concentrations, total loads, and soil concentrations of were determined. was not detected in runoff. No significant differences between treatments were observed for the 2009 rainfall simulation. However, after 3 yr of FGD gypsum applications, the highest rate of FGD gypsum resulted in decreased flow-weighted concentrations and total loads of . Flue gas desulfurization gypsum applications may be a management practice that reduces microbial contamination of surface waters from manure applied to agricultural fields in the southeastern United States.

2.
J Environ Qual ; 33(4): 1183-8, 2004.
Article in English | MEDLINE | ID: mdl-15254099

ABSTRACT

Land application of poultry litter can provide essential plant nutrients for crop production, but ammonia (NH(3)) volatilization from the litter can be detrimental to the environment. A multiseason study was conducted to quantify NH(3) volatilization rates from surface-applied poultry litter under no-till and paraplowed conservation tillage managements. Litter was applied to supply 90 to 140 kg N ha(-1). Evaluation of NH(3) volatilization was determined using gas concentrations and the flux-gradient gas transport technique using the momentum balance transport coefficient. Ammonia fluxes ranged from 3.3 to 24% of the total N applied during the winter and summer, respectively. Ammonia volatilization was rapid immediately after litter application and stopped within 7 to 8 d. Precipitation of 17 mm essentially halted volatilization, probably by transporting litter N into the soil matrix. Application of poultry to conservation-tilled cropland immediately before rainfall events would reduce N losses to the atmosphere but could also increase NO(3) leaching and runoff to streams and rivers.


Subject(s)
Ammonia/analysis , Ammonia/chemistry , Conservation of Natural Resources , Manure , Refuse Disposal , Agriculture , Animals , Environmental Monitoring , Fertilizers , Poultry , Rain , Seasons , Soil , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...