Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet A ; 194(3): e63462, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37929330

ABSTRACT

We describe a family with two maternal half-brothers both of whom presented with muscular dystrophy, autism spectrum disorder, developmental delay, and sensorineural hearing loss. The elder brother had onset of features at ~3 months of age, followed by clinical confirmation of muscular dystrophy at 3 years. Skeletal biopsy staining at 4.7 years showed an absence of dystrophin protein which prompted extensive molecular testing over 4 years that included gene panels, targeted single-gene assays, arrays, and karyotyping, all of which failed to identify a clinically significant variant in the DMD gene. At 10 years of age, clinical whole-genome sequencing (cWGS) was performed, which revealed a novel hemizygous ~50.7 Mb balanced pericentric inversion on chromosome X that disrupts the DMD gene in both siblings, consistent with the muscular dystrophy phenotype. This inversion also impacts the upstream regulatory region of POU3F4, structural rearrangements which are known to cause hearing loss. The unaffected mother is a heterozygous carrier for the pericentric inversion. This finding illustrates the ability of cWGS to detect a wide breadth of disease-causing genomic variations including large genomic rearrangements.


Subject(s)
Autism Spectrum Disorder , Muscular Dystrophies , Muscular Dystrophy, Duchenne , Child, Preschool , Female , Humans , Male , Autism Spectrum Disorder/genetics , Base Sequence , Chromosome Inversion/genetics , Dystrophin/genetics , Muscular Dystrophies/genetics , Muscular Dystrophy, Duchenne/genetics , POU Domain Factors/genetics
2.
Genet Med ; 17(3): 234-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25101914

ABSTRACT

PURPOSE: Recent published studies have demonstrated the incremental value of the use of cell-free DNA for noninvasive prenatal testing with 100% sensitivity for trisomies 21 and 18 and a specificity of ≥99.7% for both. Data presented by two independent groups suggesting positive results by noninvasive prenatal testing were not confirmed by cytogenetic studies. METHODS: Concordance of results among cases with noninvasive prenatal testing referred for cytogenetic prenatal and/or postnatal studies by karyotyping, fluorescence in situ hybridization, and/or oligo-single-nucleotide polymorphism microarray was evaluated for 109 consecutive specimens. RESULTS: Cytogenetic results were positive for trisomy 21 in 38 of the 41 noninvasive prenatal testing-positive cases (true-positive rate: 93%) and for trisomy 18 in 16 of the 25 noninvasive prenatal testing-positive cases (true-positive rate: 64%). The true-positive rate was only 44% (7/16 cases) for trisomy 13 and 38% (6/16 cases) for sex chromosome aneuploidy. CONCLUSION: These findings raise concerns about the limitations of noninvasive prenatal testing and the need for analysis of a larger number of false-positive cases to provide true positive predictive values for noninvasive testing and to search for potential biological or technical causes. Our data suggest the need for a careful interpretation of noninvasive prenatal testing results and cautious transmission of the same to providers and patients.


Subject(s)
Cytogenetic Analysis/methods , Down Syndrome/diagnosis , Prenatal Diagnosis/methods , Trisomy/diagnosis , Cell-Free System , Chromosomes, Human, Pair 18 , Female , Humans , Pregnancy , Sensitivity and Specificity , Trisomy 18 Syndrome
3.
Mol Cytogenet ; 5(1): 44, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23198868

ABSTRACT

BACKGROUND: Anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements have been reported in 2-13% of patients with non-small cell lung cancer (NSCLC). Patients with ALK rearrangements do not respond to EGFR-specific tyrosine kinase inhibitors (TKIs); however, they do benefit from small molecule inhibitors targeting ALK. RESULTS: In this study, fluorescence in situ hybridization (FISH) using a break-apart probe for the ALK gene was performed on formalin fixed paraffin-embedded tissue to determine the incidence of ALK rearrangements and hybridization patterns in a large unselected cohort of 1387 patients with a referred diagnosis of non-small cell lung cancer (1011 of these patients had a histologic diagnosis of adenocarcinoma). The abnormal FISH signal patterns varied from a single split signal to complex patterns. Among 49 abnormal samples (49/1387, 3.5%), 32 had 1 to 3 split signals. Fifteen samples had deletions of the green 5' end of the ALK signal, and 1 of these 15 samples showed amplification of the orange 3' end of the ALK signal. Two patients showed a deletion of the 3'ALK signal. Thirty eight of these 49 samples (38/1011, 3.7%) were among the 1011 patients with confirmed adenocarcinoma. Five of 8 patients with ALK rearrangements detected by FISH were confirmed to have EML4-ALK fusions by multiplex RT-PCR. Among the 45 ALK-rearranged samples tested, only 1 EGFR mutation (T790M) was detected. Two KRAS mutations were detected among 24 ALK-rearranged samples tested. CONCLUSIONS: In a large unselected series, the frequency of ALK gene rearrangement detected by FISH was approximately 3.5% of lung carcinoma, and 3.7% of patients with lung adenocarcinoma, with variant signal patterns frequently detected. Rare cases with coexisting KRAS and EGFR mutations were seen.

4.
Eur J Med Genet ; 53(6): 415-8, 2010.
Article in English | MEDLINE | ID: mdl-20832509

ABSTRACT

We report on a 6 and 9/12 year-old male patient with a de novo chromosome 3q29 microdeletion identified by BAC array comparative genomic hybridization assay (aCGH), with accompanying normal 46,XY high-resolution chromosome analysis. The patient has language-based learning disabilities and behavioral features consistent with diagnoses of autism and attention deficit hyperactivity disorder (ADHD) of the inattentive type. He also displays some other features previously associated with chromosome 3q29 microdeletion such as an elongated face, long fingers, and joint laxity. Most notably our patient, per formal IQ testing, was not found to have frank mental retardation as has been previously reported among patients with chromosome 3q29 terminal deletion, but rather our patient has demonstrated an average full-scale IQ result. Our report further expands the phenotypic spectrum of the rare chromosome 3q29 microdeletion syndrome to include the possibility of normal intelligence as corroborated by formal, longitudinal psycho-educational testing.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 3/genetics , Intelligence/genetics , Attention Deficit Disorder with Hyperactivity/genetics , Autistic Disorder/genetics , Child , Comparative Genomic Hybridization , Humans , In Situ Hybridization, Fluorescence , Male , Phenotype
5.
Hum Mol Genet ; 13(17): 1919-32, 2004 Sep 01.
Article in English | MEDLINE | ID: mdl-15229185

ABSTRACT

In addition to increased DNA-strand exchange, a cytogenetic feature of cells lacking the RecQ-like BLM helicase is a tendency for telomeres to associate. We also report additional cellular and biochemical evidence for the role of BLM in telomere maintenance. BLM co-localizes and complexes with the telomere repeat protein TRF2 in cells that employ the recombination-mediated mechanism of telomere lengthening known as ALT (alternative lengthening of telomeres). BLM co-localizes with TRF2 in foci actively synthesizing DNA during late S and G2/M; co-localization increases in late S and G2/M when ALT is thought to occur. Additionally, TRF1 and TRF2 interact directly with BLM and regulate BLM unwinding activity in vitro. Whereas TRF2 stimulates BLM unwinding of telomeric and non-telomeric substrates, TRF1 inhibits BLM unwinding of telomeric substrates only. Finally, TRF2 stimulates BLM unwinding with equimolar concentrations of TRF1, but not when TRF1 is added in molar excess. These data suggest a function for BLM in recombination-mediated telomere lengthening and support a model for the coordinated regulation of BLM activity at telomeres by TRF1 and TRF2.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA Helicases/metabolism , Models, Biological , Telomere/genetics , Telomeric Repeat Binding Protein 1/metabolism , Telomeric Repeat Binding Protein 2/metabolism , Base Sequence , Bromodeoxyuridine , Cell Cycle/genetics , Cell Cycle/physiology , Cytogenetic Analysis , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Immunohistochemistry , Immunoprecipitation , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Oligonucleotides , RecQ Helicases , Telomere/metabolism , Transfection , Tumor Cells, Cultured , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL
...