Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
EFSA J ; 20(10): e07618, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36274984

ABSTRACT

EFSA was asked by the european Commission to develop criteria as advice for consideration for the risk assessment of plants produced by targeted mutagenesis, cisgenesis and intragenesis. EFSA proposes in this statement six main criteria to assist the risk assessment of these plants. The first four criteria are related to the molecular characterisation of the genetic modification introduced in the recipient plant. The four criteria evaluate whether any exogenous DNA sequence(s) is/are present (Criterion 1), whether such sequence derives from the breeders' gene pool (Criterion 2), the type of integration (Criterion 3) and whether any endogenous plant gene is interrupted (Criterion 4). Depending on the evaluation of the above criteria, the product can be a genome edited plant where no exogenous DNA sequence is present, or a cisgenic or intragenic plant where the cisgenic and intragenic sequence are introduced by targeted insertion and no plant endogenous genes are interrupted. In these cases, two more criteria are assessed to evaluate the history of safe use (Criterion 5) and the structure and function of the new allele (Criterion 6). If cisgenic and intragenic sequence are introduced by random integration without interruption of an endogenous gene, or when no risk is identified when an endogenous gene is interrupted, the criteria 5 and 6 will also be assessed. Evaluating the history of safe use is an important part of the proportionate risk assessment of cisgenic, intragenic and genome-edited plants since the newly introduced allele may already be present in nature. However, when the history of safe use cannot be sufficiently demonstrated, the function and structure of the introduced allele should be carefully assessed. Recommendations are also included on the aspects that need further elaboration for full applicability of the criteria proposed herein are also included.

2.
EFSA J ; 20(8): e07479, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35991959

ABSTRACT

EFSA was asked by the European Commission to evaluate synthetic biology (SynBio) developments for agri-food use in the near future and to determine whether or not they are expected to constitute potential new hazards/risks. Moreover, EFSA was requested to evaluate the adequacy of existing guidelines for risk assessment of SynBio and if updated guidance is needed. The scope of this Opinion covers food and feed risk assessment, the variety of microorganisms that can be used in the food/feed chain and the whole spectrum of techniques used in SynBio. This Opinion complements a previously adopted Opinion with the evaluation of existing guidelines for the microbial characterisation and environmental risk assessment of microorganisms obtained through SynBio. The present Opinion confirms that microbial SynBio applications for food and feed use, with the exception of xenobionts, could be ready in the European Union in the next decade. New hazards were identified related to the use or production of unusual and/or new-to-nature components. Fifteen cases were selected for evaluating the adequacy of existing guidelines. These were generally adequate for assessing the product, the production process, nutritional and toxicological safety, allergenicity, exposure and post-market monitoring. The comparative approach and a safety assessment per se could be applied depending on the degree of familiarity of the SynBio organism/product with the non-genetically modified counterparts. Updated guidance is recommended for: (i) bacteriophages, protists/microalgae, (ii) exposure to plant protection products and biostimulants, (iii) xenobionts and (iv) feed additives for insects as target species. Development of risk assessment tools is recommended for assessing nutritional value of biomasses, influence of microorganisms on the gut microbiome and the gut function, allergenic potential of new-to-nature proteins, impact of horizontal gene transfer and potential risks of living cell intake. A further development towards a strain-driven risk assessment approach is recommended.

3.
Methods Mol Biol ; 2425: 589-636, 2022.
Article in English | MEDLINE | ID: mdl-35188648

ABSTRACT

This chapter aims to introduce the reader to the basic principles of environmental risk assessment of chemicals and highlights the usefulness of tiered approaches within weight of evidence approaches in relation to problem formulation i.e., data availability, time and resource availability. In silico models are then introduced and include quantitative structure-activity relationship (QSAR) models, which support filling data gaps when no chemical property or ecotoxicological data are available. In addition, biologically-based models can be applied in more data rich situations and these include generic or species-specific models such as toxicokinetic-toxicodynamic models, dynamic energy budget models, physiologically based models, and models for ecosystem hazard assessment i.e. species sensitivity distributions and ultimately for landscape assessment i.e. landscape-based modeling approaches. Throughout this chapter, particular attention is given to provide practical examples supporting the application of such in silico models in real-world settings. Future perspectives are discussed to address environmental risk assessment in a more holistic manner particularly for relevant complex questions, such as the risk assessment of multiple stressors and the development of harmonized approaches to ultimately quantify the relative contribution and impact of single chemicals, multiple chemicals and multiple stressors on living organisms.


Subject(s)
Ecosystem , Ecotoxicology , Computer Simulation , Quantitative Structure-Activity Relationship , Risk Assessment
4.
Exp Biol Med (Maywood) ; 247(1): 1-75, 2022 01.
Article in English | MEDLINE | ID: mdl-34783606

ABSTRACT

There is an evolution and increasing need for the utilization of emerging cellular, molecular and in silico technologies and novel approaches for safety assessment of food, drugs, and personal care products. Convergence of these emerging technologies is also enabling rapid advances and approaches that may impact regulatory decisions and approvals. Although the development of emerging technologies may allow rapid advances in regulatory decision making, there is concern that these new technologies have not been thoroughly evaluated to determine if they are ready for regulatory application, singularly or in combinations. The magnitude of these combined technical advances may outpace the ability to assess fit for purpose and to allow routine application of these new methods for regulatory purposes. There is a need to develop strategies to evaluate the new technologies to determine which ones are ready for regulatory use. The opportunity to apply these potentially faster, more accurate, and cost-effective approaches remains an important goal to facilitate their incorporation into regulatory use. However, without a clear strategy to evaluate emerging technologies rapidly and appropriately, the value of these efforts may go unrecognized or may take longer. It is important for the regulatory science field to keep up with the research in these technically advanced areas and to understand the science behind these new approaches. The regulatory field must understand the critical quality attributes of these novel approaches and learn from each other's experience so that workforces can be trained to prepare for emerging global regulatory challenges. Moreover, it is essential that the regulatory community must work with the technology developers to harness collective capabilities towards developing a strategy for evaluation of these new and novel assessment tools.


Subject(s)
Biomedical Research , Computer Simulation , Humans
5.
EFSA J ; 19(8): e06769, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34377191

ABSTRACT

Following a mandate from the European Commission, EFSA has developed a Guidance on Technical Requirements (Guidance on Particle-TR), defining the criteria for assessing the presence of a fraction of small particles, and setting out information requirements for applications in the regulated food and feed product areas (e.g. novel food, food/feed additives, food contact materials and pesticides). These requirements apply to particles requiring specific assessment at the nanoscale in conventional materials that do not meet the definition of engineered nanomaterial as set out in the Novel Food Regulation (EU) 2015/2283. The guidance outlines appraisal criteria grouped in three sections, to confirm whether or not the conventional risk assessment should be complemented with nanospecific considerations. The first group addresses solubility and dissolution rate as key physicochemical properties to assess whether consumers will be exposed to particles. The second group establishes the information requirements for assessing whether the conventional material contains a fraction or consists of small particles, and its characterisation. The third group describes the information to be presented for existing safety studies to demonstrate that the fraction of small particles, including particles at the nanoscale, has been properly evaluated. In addition, in order to guide the appraisal of existing safety studies, recommendations for closing the data gaps while minimising the need for conducting new animal studies are provided. This Guidance on Particle-TR complements the Guidance on risk assessment of nanomaterials to be applied in the food and feed chain, human and animal health updated by the EFSA Scientific Committee as co-published with this Guidance. Applicants are advised to consult both guidance documents before conducting new studies.

6.
EFSA J ; 19(8): e06768, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34377190

ABSTRACT

The EFSA has updated the Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain, human and animal health. It covers the application areas within EFSA's remit, including novel foods, food contact materials, food/feed additives and pesticides. The updated guidance, now Scientific Committee Guidance on nano risk assessment (SC Guidance on Nano-RA), has taken account of relevant scientific studies that provide insights to physico-chemical properties, exposure assessment and hazard characterisation of nanomaterials and areas of applicability. Together with the accompanying Guidance on Technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles (Guidance on Particle-TR), the SC Guidance on Nano-RA specifically elaborates on physico-chemical characterisation, key parameters that should be measured, methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. The SC Guidance on Nano-RA also details aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vitro/in vivo toxicological studies are discussed and a tiered framework for toxicological testing is outlined. Furthermore, in vitro degradation, toxicokinetics, genotoxicity, local and systemic toxicity as well as general issues relating to testing of nanomaterials are described. Depending on the initial tier results, additional studies may be needed to investigate reproductive and developmental toxicity, chronic toxicity and carcinogenicity, immunotoxicity and allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read-across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes or mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis.

7.
J Hazard Mater ; 404(Pt A): 124148, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33059255

ABSTRACT

Recent years have seen the development of various colloidal formulations of pesticides and other agrochemicals aimed at use in sustainable agriculture. These formulations include inorganic, organic or hybrid particulates, or nanocarriers composed of biodegradable polymers, that can provide a better control of the release of active ingredients. The very small particle sizes and high surface areas of nanopesticides may however also lead to some unintended (eco)toxicological effects due to the way in which they interact with the target and non-target species and the environment. The current level of knowledge on ecotoxicological effects of nanopesticides is scarce, especially in regard to the fate and behaviour of such formulations in the environment. Nanopesticides will however have to cross a stringent regulatory scrutiny before marketing in most countries for health and environmental risks under a range of regulatory frameworks that require pre-market notification, risk assessment and approval, followed by labelling, post-market monitoring and surveillance. This review provides an overview of the key regulatory and ecotoxicological aspects relating to nanopesticides that will need to be considered for environmentally-sustainable use in agriculture.


Subject(s)
Pesticides , Agriculture , Agrochemicals/toxicity , Ecotoxicology , Pesticides/analysis , Pesticides/toxicity , Polymers
8.
EFSA J ; 18(10): e06263, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33144886

ABSTRACT

EFSA was asked by the European Commission to consider synthetic biology developments for agri-food use in the near future and to determine if the use of this technology is expected to constitute potential risks and hazards for the environment. Moreover, EFSA was requested to evaluate the adequacy of existing guidelines for risk assessment and if updated guidance is needed. The scope of this Opinion covers viable synthetic biology microorganisms (SynBioMs) expected to be deliberately released into the environment. The evaluation was based on: (i) horizon scanning of published information, (ii) gap analysis of existing guidelines covering the scope of this mandate, and (iii) future outlooks. A horizon scan showed that SynBioM applications could be ready for deliberate release into the environment of the EU in the next decade. However, extensively engineered SynBioMs are only expected in the wider future. For the microbial characterisation and the environmental risk assessment, the existing EFSA Guidances are useful as a basis. The extent to which existing Guidances can be used depends on the familiarity of the SynBioM with non-modified organisms. Among the recommendations for updated Guidance, the range of uses of products to be assessed covering all agri-food uses and taking into account all types of microorganisms, their relevant exposure routes and receiving environments. It is suggested that new EFSA Guidances address all 'specific areas of risk' as per Directive 2001/18/EC. No novel environmental hazards are expected for current and near future SynBioMs. However, the efficacy by which the SynBioMs interact with the environment may differ. This could lead to increased exposure and risk. Novel hazards connected with the development of xenobionts may be expected in the wider future.

10.
EFSA J ; 18(6): e18061, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32874347

ABSTRACT

The communities of microorganisms and their genomes in a defined environment are collectively referred to as microbiomes (Marchesi and Ravel, 2015). They include representatives from the Bacteria, Archaea, lower and higher Eukarya, and viruses, and are found in most environments such as soils, aquatic habitats, surfaces and specific lumen of plants, animals and humans. According to ongoing studies, microbiome structures and dynamics across the food system can have both direct and indirect effects on human and animal health, in addition to their impact on food quality, safety and sustainability (CNBBSV concept paper, 2019). Moreover, recent research projects have offered new insights into the associations between microbiomes and a wide range of human diseases as well as their possible impact in modulating the exposure to environmental chemicals. As one of the core tasks of EFSA is to assess risks to human and animal health and/or the environment from substances linked to food and feed production, the increasing understanding of the role of microbiomes in health calls for a prospective mapping of their roles into regulatory scientific assessment processes with a view to understanding their potential health impact.

11.
EFSA J ; 16(7): e05327, 2018 Jul.
Article in English | MEDLINE | ID: mdl-32625968

ABSTRACT

The European Food Safety Authority has produced this Guidance on human and animal health aspects (Part 1) of the risk assessment of nanoscience and nanotechnology applications in the food and feed chain. It covers the application areas within EFSA's remit, e.g. novel foods, food contact materials, food/feed additives and pesticides. The Guidance takes account of the new developments that have taken place since publication of the previous Guidance in 2011. Potential future developments are suggested in the scientific literature for nanoencapsulated delivery systems and nanocomposites in applications such as novel foods, food/feed additives, biocides, pesticides and food contact materials. Therefore, the Guidance has taken account of relevant new scientific studies that provide more insights to physicochemical properties, exposure assessment and hazard characterisation of nanomaterials. It specifically elaborates on physicochemical characterisation of nanomaterials in terms of how to establish whether a material is a nanomaterial, the key parameters that should be measured, the methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. It also details the aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vivo/in vitro toxicological studies are discussed and a tiered framework for toxicological testing is outlined. It describes in vitro degradation, toxicokinetics, genotoxicity as well as general issues relating to testing of nanomaterials. Depending on the initial tier results, studies may be needed to investigate reproductive and developmental toxicity, immunotoxicity, allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read-across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes/mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis, and provides recommendations for further research in this area.

12.
Arch Toxicol ; 92(1): 121-141, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29273819

ABSTRACT

Development and market introduction of new nanomaterials trigger the need for an adequate risk assessment of such products alongside suitable risk communication measures. Current application of classical and new nanomaterials is analyzed in context of regulatory requirements and standardization for chemicals, food and consumer products. The challenges of nanomaterial characterization as the main bottleneck of risk assessment and regulation are presented. In some areas, e.g., quantification of nanomaterials within complex matrices, the establishment and adaptation of analytical techniques such as laser ablation inductively coupled plasma mass spectrometry and others are potentially suited to meet the requirements. As an example, we here provide an approach for the reliable characterization of human exposure to nanomaterials resulting from food packaging. Furthermore, results of nanomaterial toxicity and ecotoxicity testing are discussed, with concluding key criteria such as solubility and fiber rigidity as important parameters to be considered in material development and regulation. Although an analysis of the public opinion has revealed a distinguished rating depending on the particular field of application, a rather positive perception of nanotechnology could be ascertained for the German public in general. An improvement of material characterization in both toxicological testing as well as end-product control was concluded as being the main obstacle to ensure not only safe use of materials, but also wide acceptance of this and any novel technology in the general public.


Subject(s)
Environmental Exposure/analysis , Nanostructures/analysis , Nanostructures/toxicity , Risk Assessment/methods , Administration, Oral , Animals , Disinfectants , Ecotoxicology/methods , Environmental Exposure/adverse effects , Food Packaging , Germany , Humans , Industry/methods , Inhalation Exposure/adverse effects , Inhalation Exposure/analysis , Legislation, Food , Nanostructures/administration & dosage , Nanostructures/standards , Public Opinion
14.
Regul Toxicol Pharmacol ; 73(1): 463-76, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26169479

ABSTRACT

Nanotechnology has the potential to innovate the agricultural, feed and food sectors (hereinafter referred to as agri/feed/food). Applications that are marketed already include nano-encapsulated agrochemicals or nutrients, antimicrobial nanoparticles and active and intelligent food packaging. Many nano-enabled products are currently under research and development, and may enter the market in the near future. As for any other regulated product, applicants applying for market approval have to demonstrate the safe use of such new products without posing undue safety risks to the consumer and the environment. Several countries all over the world have been active in examining the appropriateness of their regulatory frameworks for dealing with nanotechnologies. As a consequence of this, different approaches have been taken in regulating nano-based products in agri/feed/food. The EU, along with Switzerland, were identified to be the only world region where nano-specific provisions have been incorporated in existing legislation, while in other regions nanomaterials are regulated more implicitly by mainly building on guidance for industry. This paper presents an overview and discusses the state of the art of different regulatory measures for nanomaterials in agri/feed/food, including legislation and guidance for safety assessment in EU and non-EU countries.


Subject(s)
Consumer Product Safety/legislation & jurisprudence , Food/standards , Legislation, Food/standards , Nanostructures/standards , Nanotechnology/legislation & jurisprudence , Private Sector/legislation & jurisprudence , Agriculture/legislation & jurisprudence , Agrochemicals/standards , Animals , Anti-Infective Agents/standards , European Union , Food Packaging/legislation & jurisprudence , Humans , Risk Assessment , Safety/legislation & jurisprudence
SELECTION OF CITATIONS
SEARCH DETAIL
...