Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 14(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38184845

ABSTRACT

The SAM1 and SAM2 genes encode for S-Adenosylmethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main cellular methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in Saccharomyces cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1Δ/sam1Δ, and sam2Δ/sam2Δ strains in 15 different Phenotypic Microarray plates with different components and measured growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. We explored how the phenotypic growth differences are linked to the altered gene expression, and hypothesize mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact pathways and processes. We present 6 stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role in production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.


Subject(s)
S-Adenosylmethionine , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , S-Adenosylmethionine/metabolism , Mutation , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Base Sequence
2.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-36468155

ABSTRACT

The highly conserved complexes of Target of Rapamycin (TORC1 and TORC2) are central regulators to many vital cellular processes including growth and autophagy in response to nutrient availability. Previous research has extensively elucidated exogenous nutrient control on TORC1/TORC2; however, little is known about the potential alteration of nutrient pools from mutations in biosynthesis pathways and their impact on Tor pathway activity. Here, we analyze the impacts of heterozygous mutations in aromatic amino acid biosynthesis genes on TOR signaling via differential expression of genes downstream of TORC1 and autophagy induction for TORC1 and TORC2 activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...