Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Drug Discov Today Technol ; 17: 9-15, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26724331

ABSTRACT

In the lead discovery process residence time has become an important parameter for the identification and characterization of the most efficacious compounds in vivo. To enable the success of compound optimization by medicinal chemistry toward a desired residence time the understanding of structure-kinetic relationship (SKR) is essential. This article reviews various approaches to monitor SKR and suggests using the on-rate as the key monitoring parameter. The literature is reviewed and examples of compound series with low variability as well as with significant changes in on-rates are highlighted. Furthermore, findings of kinetic on-rate changes are presented and potential underlying rationales are discussed.


Subject(s)
Drug Discovery , Pharmaceutical Preparations/metabolism , Proteins/metabolism , Kinetics , Pharmaceutical Preparations/chemistry , Protein Binding , Structure-Activity Relationship
2.
ChemMedChem ; 1(1): 106-17, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16892342

ABSTRACT

At present nine FDA-approved HIV protease inhibitors have been launched to market, however rapid drug resistance arising under antiviral therapy calls upon novel concepts. Possible strategies are the development of ligands with less peptide-like character or the stabilization of a new and unexpected binding-competent conformation of the protein through a novel ligand-binding mode. Our rational design of pyrrolidinedimethylene diamines was inspired by the idea to incorporate key structural elements from classical peptidomimetics with a non-peptidic heterocyclic core comprising an endocyclic amino function to address the catalytic aspartic acid side chains of Asp 25 and 25'. The basic scaffolds were decorated by side chains already optimized for the recognition pockets of HIV protease or cathepsin D. A multistep synthesis has been established to produce the central heterocycle and to give flexible access to side chain decorations. Depending on the substitution pattern of the pyrrolidine moiety, single-digit micromolar inhibition of HIV-1 protease and cathepsin D has been achieved. Successful design is suggested in agreement with our modelling concepts. The subsequently determined crystal structure with HIV protease shows that the pyrrolidine moiety binds as expected to the pivotal position between both aspartic acid side chains. However, even though the inhibitors have been equipped symmetrically by polar acceptor groups to address the flap water molecule, it is repelled from the complex, and only one direct hydrogen bond is formed to the flap. A strong distortion of the flap region is detected, leading to a novel hydrogen bond which cross-links the flap loops. Furthermore, the inhibitor addresses only three of the four available recognition pockets. It achieves only an incomplete desolvation compared with the similarly decorated amprenavir. Taking these considerations into account it is surprising that the produced pyrrolidine derivatives achieve micromolar inhibition and it suggests extraordinary potency of the new compound class. Most likely, the protonated pyrrolidine moiety experiences strong enthalpic interactions with the enzyme through the formation of two salt bridges to the aspartic acid side chains. This might provide challenging opportunities to combat resistance of the rapidly mutating virus.


Subject(s)
HIV Protease/metabolism , Pyrrolidines/chemistry , Pyrrolidines/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Mass Spectrometry , Models, Molecular , Molecular Structure , Protein Binding , Pyrrolidines/chemical synthesis
3.
J Med Chem ; 48(21): 6607-19, 2005 Oct 20.
Article in English | MEDLINE | ID: mdl-16220977

ABSTRACT

Hydroxyethylene sulfones were developed as novel scaffolds against aspartyl proteases. A diastereoselective synthesis has been established to introduce the required side chain decoration with desired stereochemistry. Depending on the substitution of the hydroxyethylene sulfone core, micro- to submicromolar inhibition of HIV-1 protease is achieved for the S-configuration at P1 and R-configuration at the hydroxy-group-bearing backbone atom. This stereochemical preference is consistent with the S,R configuration of amprenavir. The racemic mixture of the most potent derivative (K(i) = 80 nM) was separated by chiral HPLC, revealing the S,R,S-enantiomer to be more active (K(i) = 45 nM). Docking studies suggested this isomer as the more active one. The subsequently determined crystal structure with HIV-1 protease, cocrystallized from a racemic mixture, exclusively reveals the S,R,S-enantiomer accommodated to the binding pocket. The transition state mimicking hydroxy group of the inhibitor is centered between both catalytic aspartates, while either its carbonyl or sulfonyl group forms H-bonds to the structurally conserved water mediating interactions between ligand and Ile50NH/Ile50NH' of both flaps. Biological testing of the stereoisomeric hydroxyethylene sulfones against cathepsin D and beta-secretase did not reveal significant inhibition. Most likely, the latter proteases require inverted configuration at the hydroxy group.


Subject(s)
Anti-HIV Agents/chemical synthesis , Ethylenes/chemical synthesis , HIV Protease/chemistry , Protease Inhibitors/chemical synthesis , Sulfones/chemical synthesis , Anti-HIV Agents/chemistry , Binding Sites , Crystallography, X-Ray , Ethylenes/chemistry , Kinetics , Models, Molecular , Molecular Structure , Protease Inhibitors/chemistry , Stereoisomerism , Structure-Activity Relationship , Sulfones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL