Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 78(8): 4946-9, 1981 Aug.
Article in English | MEDLINE | ID: mdl-6946442

ABSTRACT

The rare gas xenon contains two NMR-sensitive isotopes in high natural abundance. The nuclide 129Xe has a spin of 1/2: 131Xe is quadrupolar with a spin of 3/2. The complementary NMR characteristics of these nuclei provide a unique opportunity for probing their environment. The method is widely applicable because xenon interacts with a useful range of condensed phases including pure liquids, protein solutions, and suspensions of lipid and biological membranes. Although xenon is chemically inert, it does interact with living systems; it is an effective general anesthetic. We have found that the range of chemical shifts of 129Xe dissolved in common solvents is ca. 200 ppm, which is 30 times larger than that found for 13C in methane dissolved in various solvents. Resonances were also observed for 131Xe in some systems; they were broader and exhibited much greater relaxation rates than did 129Xe. The use of 129Xe NMR as a probe of biological systems was investigated. Spectra were obtained from solutions of myoglobin, from suspensions of various lipid bilayers, and from suspensions of the membranes of erythrocytes and of the acetylcholine receptor-rich membranes of Torpedo californica. These systems exhibited a smaller range of chemical shifts. In most cases there was evidence of a fast exchange of xenon between the aqueous and organic environments, but the exchange was slow in suspensions of dimyristoyl lecithin vesicles.


Subject(s)
Lipid Bilayers , Magnetic Resonance Spectroscopy/methods , Xenon , Myoglobin , Phosphatidylcholines , Solvents , Temperature
3.
Biochim Biophys Acta ; 453(1): 200-4, 1976 Nov 26.
Article in English | MEDLINE | ID: mdl-187230

ABSTRACT

The circular dichroism spectrum of resting mushroom tyrosinase between 800 and 400 nm showed two bands at 755, and 653 nm. The CD spectrum of resting tyrosinase between 400 and 250 nm showed oxygen-sensitive changes at 350 nm upon treatment of tyrosinase with hydroxylamine or hydrogen peroxide. These were similar to changes observed on regeneration of aged hemocyanin by similar procedures. A structural relationship between the active sites of hydroxylamine- or hydrogen peroxide-treated tyrosinase and hemocyanin is suggested by these observations, confirming inferences based upon other studies (Jolly, Jr., R.L., Evans, L.H., Makino, N. and Mason, H.S. (1974) J. Biol. Chem. 249, 335-345 and Schoot Uiterkamp, A.J.M. and Mason, H.S. (1973) Proc. Natl. Acad, Sci. U.S. 70, 993-996).


Subject(s)
Agaricales/enzymology , Catechol Oxidase , Isoenzymes , Monophenol Monooxygenase , Binding Sites , Catechol Oxidase/metabolism , Circular Dichroism , Electron Spin Resonance Spectroscopy , Hydroxylamines/pharmacology , Isoenzymes/metabolism , Monophenol Monooxygenase/metabolism , Oxygen , Protein Binding , Protein Conformation , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...