Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animal ; 17 Suppl 5: 101025, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38016827

ABSTRACT

Current feed formulation and evaluation practices rely on static values for the nutritional value of feed ingredients and assume additivity. Hereby, the complex interplay among nutrients in the diet and the highly dynamic digestive processes are ignored. Nutrient digestion kinetics and diet × animal interactions should be acknowledged to improve future predictions of the nutritional value of complex diets. Therefore, an in silico nutrient-based mechanistic digestion model for growing pigs was developed: "SNAPIG" (Simulating Nutrient digestion and Absorption kinetics in PIGs). Aiming to predict the rate and extent of nutrient absorption from diets varying in ingredient composition and physicochemical properties, the model represents digestion kinetics of ingested protein, starch, fat, and non-starch polysaccharides, through passage, hydrolysis, absorption, and endogenous secretions of nutrients along the stomach, proximal small intestine, distal small intestine, and caecum + colon. Input variables are nutrient intake and the physicochemical properties (i.e. solubility, and rate and extent of degradability). Data on the rate and extent of starch and protein hydrolysis of different ingredients per digestive segment were derived from in vitro assays. Passage of digesta from the stomach was modelled as a function of feed intake level, dietary nutrient solubility and diet viscosity. Model evaluation included testing against independent data from in vivo studies on nutrient appearance in (portal) blood of growing pigs. When simulating diets varying in physicochemical properties and nutrient source, SNAPIG can explain variation in glucose absorption kinetics (postprandial time of peak, TOP: 20-100 min observed vs 25-98 min predicted), and predict variation in the extent of ileal protein and fat digestion (root mean square prediction errors (RMSPE) = 12 and 16%, disturbance error = 12 and 86%, and concordance correlation coefficient = 0.34 and 0.27). For amino acid absorption, the observed variation in postprandial TOP (61 ± 11 min) was poorly predicted despite accurate mean predictions (58 ± 34 min). Recalibrating protein digestion and amino acid absorption kinetics require data on net-portal nutrient appearance, combined with observations on digestion kinetics, in pigs fed diets varying in ingredient composition. Currently, SNAPIG can be used to forecast the time and extent of nutrient digestion and absorption when simulating diets varying in ingredient and nutrient composition. It enhances our quantitative understanding of nutrient digestion kinetics and identifies knowledge gaps in this field of research. Already useful as research tool, SNAPIG can be coupled with a postabsorptive metabolism model to predict the effects of dietary and feeding-strategies on the pig's growth response.


Subject(s)
Animal Feed , Digestion , Animals , Digestion/physiology , Animal Feed/analysis , Diet/veterinary , Starch/metabolism , Ileum/metabolism , Nutrients , Amino Acids , Animal Nutritional Physiological Phenomena
2.
Animal ; 14(2): 269-276, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31405398

ABSTRACT

Rheological properties of digesta play a role in digesta passage kinetics through the gastrointestinal tract, in turn affecting nutrient absorption kinetics. Therefore, we studied the effects of diet viscosity on digesta passage and physicochemical properties in pigs. Twenty male growing pigs (35 kg body weight at the start) were assigned to one of five diets with increasing dietary concentrations of ß-glucans (BG; from 0 % to 10 %), in exchange for maize starch. After a 17-day adaptation period, pigs were euthanised and the mean retention time (MRT) of digesta solids (TiO2) and liquids (Cr-EDTA) in the stomach, and proximal and distal half of the small intestine was quantified. In the stomach, the MRT of liquids, but not of solids, increased when dietary BG level increased (6 min per % dietary BG, P = 0.008 and R2 = 0.35). Concomitantly, stomach DM content (5 g/kg per % dietary BG, P < 0.001 and R2 = 0.53) and apparent digesta viscosity (56 Pa × s at 1/s shear rate per % dietary BG, P = 0.003 and R2 = 0.41) decreased. In the proximal half of the small intestine, no effects of dietary BG level were observed. In the distal half of the small intestine, water-binding capacity (WBC) of digesta increased (0.11 g/g digesta DM per % dietary BG, P = 0.028 and R2 = 0.24) and starch digestibility decreased (0.3% per % dietary BG, P = 0.034 and R2 = 0.23) when dietary BG level increased. In the colon, apparent digesta viscosity at 45/s shear rate increased (0.1 Pa × s per % dietary BG, P = 0.03 and R2 = 0.24) in the proximal half of the colon, and digesta WBC increased (0.06 g/g digesta DM per % dietary BG, P = 0.024 and R2 = 0.26) in the distal half of the colon when dietary BG level increased. To conclude, increasing dietary BG level caused the MRT of liquids, but not that of solids, to increase in the stomach, resulting in reduced separation of the solid and liquid digesta fractions. This caused dilution of the stomach content and reduction in digesta viscosity when dietary BG levels increased. Effects of dietary BG level on physicochemical properties in the proximal small intestine were absent and may have been due to a low DM content. The WBC of digesta in the distal small intestine and colon increased when dietary BG level increased, as did apparent digesta viscosity in the proximal colon. This likely reflects the concentration of BG in digesta when moving through the gastrointestinal tract.


Subject(s)
Animal Feed/analysis , Swine/physiology , beta-Glucans/chemistry , Animals , Body Weight , Diet/veterinary , Digestion , Gastrointestinal Contents/chemistry , Gastrointestinal Tract/physiology , Intestine, Small/physiology , Kinetics , Male , Rheology , Stomach/physiology , Viscosity
3.
Theriogenology ; 86(4): 981-987, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27129397

ABSTRACT

The use of nurse sows in Danish piggeries is common practice because of large litter sizes; however, the effect of being selected as a nurse sow on subsequent reproductive performance is unknown. Therefore, the aim of this study was to quantify a nurse sow's reproductive performance in the subsequent litter. Nurse sows were defined as sows weaning their own litter at least 18 days postpartum and thereafter nursing another litter (nurse litter) before service. Data (2012-2013) from 20 piggeries with more than 14.5 live born piglets per litter and a stable distribution of sows among parities over time were selected. Records from 79,864 litters were obtained and analyzed using mixed linear and logistic regression models. The average lactation lengths were 40.3 days for nurse sows and 27.8 days for non-nurse (normal) sows. Nurse sows weaned on average 12.4 piglets and subsequently 11.5 nurse piglets, whereas non-nurse weaned 11.7 piglets in their single weaning. There was no difference in re-service rate between nurse and non-nurse sows in the subsequent reproductive cycle. Subsequent litter size in the next reproductive cycle was higher for nurse sows than that for non-nurse sows (18.69 vs. 18.11 total born piglets; P < 0.001). Nurse sows were of a slightly lower parity than non-nurse sows (3.12 vs. 3.27, P < 0.001), and nurse sows had an increased weaning to estrus interval compared to non-nurse sows (4.23 vs. 4.19 days, P < 0.001). The results indicate that nurse sows were selected among sows nursing large litters and could therefore suggest that these sows represent the best percentile of sows in a given piggery. In conclusion, this survey indicated no negative effects of being selected as a nurse sow on the subsequent reproductive performance. On the contrary, nurse sows gave birth to more piglets compared to non-nurse sows in their subsequent litter.


Subject(s)
Animal Husbandry/methods , Lactation/physiology , Swine/physiology , Animals , Denmark , Female , Litter Size , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...