Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 42(11): 1809-1818, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31350606

ABSTRACT

There is a need to develop low operational intensity, cost-effective, and small-footprint systems to treat wastewater. Partial nitritation has been studied using a variety of control strategies, however, a gap in passive operation is evident. This research investigates the use of elevated loading rates as a strategy for achieving low operational intensity partial nitritation in a moving bed biofilm reactor (MBBR) system. The effects of loading rates on nitrification kinetics and biofilm characteristics were determined at elevated, steady dissolved oxygen concentrations between 5.5 and 7.0 mg O2/L and ambient temperatures between 19 and 21 °C. Four elevated loading rates (3, 4, 5 and 6.5 g NH4+-N/m2 days) were tested with a distinct shift in kinetics being observed towards nitritation at elevated loadings. Complete partial nitritation (100% nitrite production) was achieved at 6.5 g NH4+-N/m2 days, likely due to thick biofilm (572 µm) and elevated NH4+-N load, which resulted in suppression of nitrite oxidation.


Subject(s)
Biofilms/growth & development , Bioreactors , Models, Biological , Nitrification , Ammonia/metabolism , Kinetics , Oxygen/metabolism
2.
Bioprocess Biosyst Eng ; 41(10): 1485-1495, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29980867

ABSTRACT

Copper, a prevalent heavy metal in industrial mining wastewaters, has been shown to inhibit nitrification in wastewater treatment systems. Biofilm treatment systems have an inherent potential to reduce inhibition. This study investigated the effects of copper concentration on nitrifying biofilms in moving bed biofilm reactor (MBBR) systems across long term operation using influent ammonia concentrations representative of gold mining wastewater. Conventional isotherm models did not adequately model the attachment of copper to the biofilm. Long term nitritation was shown to be uninhibited at influent copper concentrations between 0.13 and 0.61 mg Cu/L. Nitratation was inhibited with influent copper concentrations of 0.28-0.61 mg Cu/L. There was no statistical difference in biofilm characteristics, including biofilm thickness, mass and density, across all copper concentrations tested, however, changes in biofilm morphology were observed. The demonstrated resistance of the nitrifying biofilm to copper inhibition makes the MBBR system a promising technology for treating ammonia in mining wastewaters.


Subject(s)
Biofilms/drug effects , Biofilms/growth & development , Bioreactors , Copper/metabolism , Copper/pharmacology , Nitrification/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...