Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 597: 120326, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33540003

ABSTRACT

Although nanoparticles (NPs) bear a great potential in tumour therapy, just a few nanosized drug delivery systems are commercially available. Besides their advantages like passive drug targeting and stable embedment of lipophilic active pharmaceutical ingredients, targeted drug release is a major challenge for a safe therapy. While drug release of commonly used materials depends on physiological factors, nanoparticles prepared by using stimuli responsive polymers offer a promising approach. External irradiation of light-sensitive nanoparticles enables local drug release, resulting in selective accumulation and consequently more effective treatment with less side effects. In this study light-responsive nanoparticles based on a new innovative light-responsive polyester (Nip-SLrPE) combined with poly(DL-lactide-co-glycolide) (PLGA) were prepared and examined for their physicochemical characteristics and light-triggered properties. As model drug the photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorine (mTHPC) was incorporated and light-depending drug release was investigated. Furthermore, cytotoxic potential of selected formulations for PDT and intracellular accumulation of mTHPC were evaluated. In conclusion, nanoparticles based on the new light-sensitive Nip-SLrPE showed auspicious light-responsive properties, resulting in promising results for a smart drug delivery system.


Subject(s)
Nanoparticles , Photochemotherapy , Drug Delivery Systems , Photosensitizing Agents , Polyesters
2.
Int J Pharm ; 565: 199-208, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31051231

ABSTRACT

Nanoparticles (NP) have gained importance as drug delivery systems for pharmaceutical challenging drugs. Their size properties allow passive targeting of cancer tissue by exploiting the enhanced permeability and retention (EPR) effect. Furthermore, surface modifications enable an active drug targeting for diseased regions in the human body. Besides the advantages, the drug release from commonly used biodegradable NP is mostly depending on physiological circumstances. Hence, there is a need for a more controllable drug release. The use of light-responsive polymers is an innovative conception enabling a more distinct drug release by an external light stimulus. The idea provides potential for an increase in efficiency and safety of local therapies. In this study, innovative light-sensitive NP were investigated for a photodynamic therapy (PDT) of gastrointestinal tumors. Nanoparticles based on a newly developed light-responsive polycarbonate (LrPC) and poly(lactic-co-glycolic-acid) (PLGA) were loaded with the approved photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorin (mTHPC). Mucus penetrating properties were obtained by surface PEGylation of the nanoparticles either by using LrPC in combination with a PEGylated PLA (PEG-PLA) or by a combination with PEGylated LrPC (LrPC-PEG). Cytotoxic potential in dependency of a light-induced drug release was investigated in different cytotoxicity assays. Intracellular accumulation in mucus producing colon-carcinoma cell line HT-29-MTX was analysed by HPLC and confocal laser microscopy.


Subject(s)
Intestinal Neoplasms/drug therapy , Mesoporphyrins , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Cell Survival/drug effects , DNA Damage , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/radiation effects , HT29 Cells , Humans , Light , Mesoporphyrins/administration & dosage , Mesoporphyrins/chemistry , Mesoporphyrins/radiation effects , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Nanoparticles/radiation effects , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemistry , Photosensitizing Agents/radiation effects , Polymers/administration & dosage , Polymers/chemistry , Polymers/radiation effects
3.
ACS Appl Bio Mater ; 2(7): 3038-3051, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-35030796

ABSTRACT

Stimuli-responsive self-immolative aliphatic polycarbonates (APCs) and polyesters (APEs) have attractive advantages for biomedical and pharmaceutical applications. In the present work, polycondensation of o-nitrobenzyl-protected serinol was explored as a simple route to obtain light-responsive polycarbonate (LrPC) and polyester (LrPE). By exposure to UV light, these polymers decomposed rapidly and completely into oligomers and small molecules, as detected by size exclusion chromatography (SEC), UV/vis, and 1H nuclear magnetic resonance (NMR) spectroscopies. The degradation mechanism of serinol-based APC and APE was investigated with the help of the Boc-protected model APC and APE, showing that the APC underwent intramolecular cyclization, accompanied by intermolecular transcarbamation, and degraded into oxazolidinone and 2-aminopropanol terminated oligourethanes. Different from APC, the degradation process of serinol-based APE has been proven by electrospray ionization time-of-flight mass spectrometry (ESI-ToF-MS) to follow intramolecular cyclization of the functional amine group with the remote ester group, forming a ten-membered cyclic degradation compound. Further processing of the serinol-based polymers was performed by preparation of nanoparticles (NP). With light-responsive characteristics, a drug delivery system could be potentially obtained enabling a controllable drug release. Based on this strategy, a variety of self-immolative polymers responsive to different triggers can be prepared by polycondensation without the limit of ring-opening polymerization and will expand the family of biodegradable polymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...