Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Signal ; 17(9): 1111-24, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15993752

ABSTRACT

Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and MAPK pathways plays a role in early T-cell activation and induction of IL-2, IL-2R(alpha) and IFN(gamma) gene expression.


Subject(s)
Lymphocyte Activation , Receptors, Interleukin-2/biosynthesis , T-Lymphocytes/immunology , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinase Type II , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Interleukin Receptor Common gamma Subunit , Interleukin-2/biosynthesis , Interleukin-2/genetics , Interleukin-2 Receptor alpha Subunit , Interleukin-2 Receptor beta Subunit , Intracellular Signaling Peptides and Proteins/pharmacology , Kinetics , Protein Kinase C/metabolism , RNA, Messenger/biosynthesis , Receptors, Interleukin/biosynthesis , Receptors, Interleukin/genetics , Receptors, Interleukin-2/genetics , T-Lymphocytes/enzymology , Transcription Factor AP-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...