Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Elife ; 112022 07 04.
Article in English | MEDLINE | ID: mdl-35786442

ABSTRACT

Subthalamic nucleus deep brain stimulation (STN DBS) relieves many motor symptoms of Parkinson's disease (PD), but its underlying therapeutic mechanisms remain unclear. Since its advent, three major theories have been proposed: (1) DBS inhibits the STN and basal ganglia output; (2) DBS antidromically activates motor cortex; and (3) DBS disrupts firing dynamics within the STN. Previously, stimulation-related electrical artifacts limited mechanistic investigations using electrophysiology. We used electrical artifact-free GCaMP fiber photometry to investigate activity in basal ganglia nuclei during STN DBS in parkinsonian mice. To test whether the observed changes in activity were sufficient to relieve motor symptoms, we then combined electrophysiological recording with targeted optical DBS protocols. Our findings suggest that STN DBS exerts its therapeutic effect through the disruption of movement-related STN activity, rather than inhibition or antidromic activation. These results provide insight into optimizing PD treatments and establish an approach for investigating DBS in other neuropsychiatric conditions.


Subject(s)
Deep Brain Stimulation , Motor Cortex , Parkinson Disease , Subthalamic Nucleus , Animals , Deep Brain Stimulation/methods , Mice , Motor Cortex/physiology , Movement/physiology , Parkinson Disease/therapy , Subthalamic Nucleus/physiology
3.
Cell ; 180(3): 552-567.e25, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32004462

ABSTRACT

Cognitive faculties such as imagination, planning, and decision-making entail the ability to represent hypothetical experience. Crucially, animal behavior in natural settings implies that the brain can represent hypothetical future experience not only quickly but also constantly over time, as external events continually unfold. To determine how this is possible, we recorded neural activity in the hippocampus of rats navigating a maze with multiple spatial paths. We found neural activity encoding two possible future scenarios (two upcoming maze paths) in constant alternation at 8 Hz: one scenario per ∼125-ms cycle. Further, we found that the underlying dynamics of cycling (both inter- and intra-cycle dynamics) generalized across qualitatively different representational correlates (location and direction). Notably, cycling occurred across moving behaviors, including during running. These findings identify a general dynamic process capable of quickly and continually representing hypothetical experience, including that of multiple possible futures.


Subject(s)
Behavior, Animal/physiology , Cognition/physiology , Decision Making/physiology , Hippocampus/physiology , Action Potentials/physiology , Animals , Locomotion/physiology , Male , Maze Learning/physiology , Nerve Net/physiology , Neurons/physiology , Rats , Rats, Long-Evans , Theta Rhythm/physiology
4.
J Clin Invest ; 129(9): 3833-3838, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31194696

ABSTRACT

Deep brain stimulation (DBS) is used to treat multiple neuropsychiatric disorders, including Parkinson's Disease (PD). Despite widespread clinical use, its therapeutic mechanisms are unknown. Here, we developed a mouse model of subthalamic nucleus (STN) DBS for PD, to permit investigation using cell type-specific tools available in mice. We found that electrical STN DBS relieved bradykinesia, as measured by movement velocity. In addition, our model recapitulated several hallmarks of human STN DBS, including rapid onset and offset, frequency dependence, dyskinesia at higher stimulation intensity, and associations between electrode location, therapeutic benefit, and side effects. We used this model to assess whether high frequency stimulation is necessary for effective STN DBS, or if low frequency stimulation can be effective when paired with compensatory adjustments in other parameters. We found that low frequency stimulation, paired with greater pulse width and amplitude, relieved bradykinesia. Moreover, a composite metric incorporating pulse width, amplitude, and frequency predicted therapeutic efficacy better than frequency alone. We found a similar relationship between this composite metric and movement speed in a retrospective analysis of human data, suggesting correlations observed in the mouse model may extend to human patients. Together, these data establish a mouse model for elucidating mechanisms of DBS.


Subject(s)
Deep Brain Stimulation/methods , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Animals , Behavior, Animal , Disease Models, Animal , Electrodes , Humans , Hypokinesia/metabolism , Hypokinesia/therapy , Mice , Mice, Inbred C57BL , Oxidopamine , Retrospective Studies , Subthalamic Nucleus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...