Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Klin Monbl Augenheilkd ; 240(10): 1158-1173, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37714190

ABSTRACT

BACKGROUND: Achromatopsia (ACHM) as a hereditary cone disease might manifest in a stationary and progressive manner. The proper clinical and genetic diagnosis may allow an individual prognosis, accurate genetic counselling, and the optimal choice of low vision aids. The primary aim of the study was to determine the spectrum of clinical and genetic diagnostics required to characterize the ACHM. METHODS: A retrospective analysis was performed in 8 patients from non-related families (5 ♀,3 ♂); age at diagnosis: 3 - 56 y, mean 18.13 (SD ± 18.22). Clinical phenotyping, supported by colour vision test, fundus photography-, autofluorescence- (FAF), infra-red- (IR), OCT imaging and electroretinography provided information on the current status and the course of the disease over the years. In addition, genetic examinations were performed with ACHM relevant testing (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H and the transcription factor ATF6). RESULTS: All patients suffered photophobia and reduced visual acuity (mean: 0.16 [SD ± 0.08]). Nystagmus was identified in 7 from 8 subjects and in one patient a head-turn right helped to reduce the nystagmus amplitude. Colour vision testing confirmed complete achromatopsia in 7 out of 8 patients. Electrophysiology found severely reduced photopic- but also scotopic responses. Thinning and interruption of the inner segment ellipsoid (ISe) line within the macula but also FAF- and IR abnormalities in the fovea and/or parafovea were characteristic in all ACHM patients. Identification of pathogenic mutations in 7 patients helped to confirm the diagnosis of ACHM (3 adults, 4 children; 3 ♀ and 4 ♂). Achromatopsia was linked to CNGA3 (2 ♀, 1 ♂) and CNGB3 variants (2 ♀, 3 ♂). The youngest patient (♀, 10 y) had 3 different CNGB3 variants on different alleles. In a patient (♂, 29 y) carrying 2 pathogenic digenic-triallelic CNGA3- and CNGB3-mutations, a severe progression of ISe discontinuity to coloboma-like macular atrophy was observed during the 12-year follow-up. The oldest female (67 y) showed a compound homozygous CNGA3- and heterozygous CNGB3-, as well as a heterozygous GUCY2D variants. The destruction of her ISe line was significantly enlarged and represented a progressive cone-rod phenotype in comparison to other ACHM patients. In a patient (♂, 45 y) carrying a pathogenic CNGB3 and USH2 mutation, a severe macular oedema and a rod-cone phenotype was observed. In addition, two variants in C2ORF71 considered as VOS were found. One patient showed the rare ATF6 mutation, where a severe coloboma-like macular atrophy was observed on the left eye as early as at the age of three years. CONCLUSION: Combining multimodal ophthalmological diagnostics and molecular genetics when evaluating patients with ACHM helps in characterizing the disease and associated modifiers, and is therefore strongly recommended for such patients.

2.
Cells ; 11(8)2022 04 18.
Article in English | MEDLINE | ID: mdl-35456052

ABSTRACT

Zebrafish show an extraordinary potential for regeneration in several organs from fins to central nervous system. Most impressively, the outcome of an injury results in a near perfect regeneration and a full functional recovery. Indeed, among the various injury paradigms previously tested in the field of zebrafish retina regeneration, a perfect layered structure is observed after one month of recovery in most of the reported cases. In this study, we applied cryoinjury to the zebrafish eye. We show that retina exposed to this treatment for one second undergoes an acute damage affecting all retinal cell types, followed by a phase of limited tissue remodeling and regrowth. Surprisingly, zebrafish developed a persistent retinal dysplasia observable through 300 days post-injury. There is no indication of fibrosis during the regeneration period, contrary to the regeneration process after cryoinjury to the zebrafish cardiac ventricle. RNA sequencing analysis of injured retinas at different time points has uncovered enriched processes and a number of potential candidate genes. By means of this simple, time and cost-effective technique, we propose a zebrafish injury model that displays a unique inability to completely recover following focal retinal damage; an outcome that is unreported to our knowledge. Furthermore, RNA sequencing proved to be useful in identifying pathways, which may play a crucial role not only in the regeneration of the retina, but in the first initial step of regeneration, degeneration. We propose that this model may prove useful in comparative and translational studies to examine critical pathways for successful regeneration.


Subject(s)
Retina , Zebrafish , Animals , Heart Ventricles , Nerve Regeneration/physiology , Retina/physiology , Zebrafish/physiology
3.
Int J Mol Sci ; 23(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35457110

ABSTRACT

Biallelic gene defects in MFSD8 are not only a cause of the late-infantile form of neuronal ceroid lipofuscinosis, but also of rare isolated retinal degeneration. We report clinical and genetic data of seven patients compound heterozygous or homozygous for variants in MFSD8, issued from a French cohort with inherited retinal degeneration, and two additional patients retrieved from a Swiss cohort. Next-generation sequencing of large panels combined with whole-genome sequencing allowed for the identification of twelve variants from which seven were novel. Among them were one deep intronic variant c.998+1669A>G, one large deletion encompassing exon 9 and 10, and a silent change c.750A>G. Transcript analysis performed on patients' lymphoblastoid cell lines revealed the creation of a donor splice site by c.998+1669A>G, resulting in a 140 bp pseudoexon insertion in intron 10. Variant c.750A>G produced exon 8 skipping. In silico and in cellulo studies of these variants allowed us to assign the pathogenic effect, and showed that the combination of at least one severe variant with a moderate one leads to isolated retinal dystrophy, whereas the combination in trans of two severe variants is responsible for early onset severe retinal dystrophy in the context of late-infantile neuronal ceroid lipofuscinosis.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Retinal Dystrophies , Exons/genetics , Homozygote , Humans , Membrane Transport Proteins/genetics , Mutation , Neuronal Ceroid-Lipofuscinoses/genetics , Retinal Dystrophies/genetics
4.
Cells ; 11(7)2022 03 24.
Article in English | MEDLINE | ID: mdl-35406651

ABSTRACT

H6 family homeobox 1 (HMX1) regulates multiple aspects of craniofacial development, and mutations in HMX1 are linked to an ocular defect termed oculoauricular syndrome of Schorderet-Munier-Franceschetti (OAS) (MIM #612109). Recently, additional altered orofacial features have been reported, including short mandibular rami, asymmetry of the jaws, and altered premaxilla. We found that in two mutant zebrafish lines termed hmx1mut10 and hmx1mut150, precocious mineralization of the proximal vertebrae occurred. Zebrafish hmx1mut10 and hmx1mut150 report mutations in the SD1 and HD domains, which are essential for dimerization and activity of hmx1. In hmx1mut10, the bone morphogenetic protein (BMP) antagonists chordin and noggin1 were downregulated, while bmp2b and bmp4 were highly expressed and specifically localized to the dorsal region prior to the initiation of the osteogenic process. The osteogenic promoters runx2b and spp1 were also upregulated. Supplementation with DMH1-an inhibitor of the BMP signaling pathway-at the specific stage in which bmp2b and bmp4 are highly expressed resulted in reduced vertebral mineralization, resembling the wildtype mineralization progress of the axial skeleton. These results point to a possible role of hmx1 as part of a complex gene network that inhibits bmp2b and bmp4 in the dorsal region, thus regulating early axial skeleton development.


Subject(s)
Bone Diseases , Zebrafish Proteins , Zebrafish , Animals , Bone Diseases/genetics , Calcification, Physiologic , Genes, Homeobox , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
5.
Invest Ophthalmol Vis Sci ; 63(3): 23, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35333290

ABSTRACT

Purpose: To report that variants in the gene for a large lamina basal component protein, COL6A6 (collagen type VI alpha 6 chain, Col6α6), linked to chromosome 3p22.1 causes retinitis pigmentosa (RP) in patients with autosomal dominant transmission (adRP). Methods: A positional-cloning approach, whole exome sequencing, and modeling were used. The proband and several affected family members have been phenotyped and followed for over 12 years. Results: A heterozygous missense variant, c.509C>G (p. Ser170Cys) in exon 2 of COL6A6 (comprised of 36 exons and 2236 amino acids), was observed in a four- generation family and is likely to cause the adRP phenotype. It was identified in 10 affected members. All affected family members had a distinct phenotype: late-onset rod cone dystrophy, with good retained visual acuity, until their late 70s. Immunohistochemistry of human retina showed a dot-like signal at the base of the inner segments of photoreceptors and outer plexiform layer (OPL). The structural modeling of the N7 domain of Col6α6 suggests that the mutant might result in the abnormal cellular localization of collagen VI or malformation of collagen fibers resulting in the loss of its unique filament structure. Conclusions: COL6A6 is widely expressed in human tissues and evolutionary conserved. It is thought to interact with a range of extracellular matrix components. Our findings suggest that this form of RP has long-term useful central visual acuity and a mild progression, which are important considerations for patient counseling.


Subject(s)
Collagen Type VI , Cone-Rod Dystrophies , Retinitis Pigmentosa , Collagen Type VI/genetics , Cone-Rod Dystrophies/genetics , Exons , Humans , Mutation, Missense , Pedigree , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics
6.
Oncotarget ; 12(9): 907-916, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33953844

ABSTRACT

Retinoblastoma is the most common pediatric intraocular malignant tumor. While retinoblastoma initiation is triggered by the inactivation of both alleles of the retinoblastoma tumor suppressor gene (RB1) in the developing retina, tumor progression requires additional epigenetic changes, retinoblastoma genomes being quite stable. Although the management of RB has recently improved, new therapeutic agents are necessary to improve the treatment of advanced forms of retinoblastoma. In this report, we analyzed the pro-death effect of piperlongumine (PL), a natural compound isolated from Piper longum L., on two human retinoblastoma cell lines, WERI-Rb and Y79. The effects of PL on cell proliferation, cell death and cell cycle were investigated. PL effectively inhibited cell growth, impacted the cell cycle by decreasing the level of cyclins and CDK1 and increasing CDKN1A and triggered a caspase-3 independant cell death process in which reactive oxygen species (ROS) production is a major player. Indeed, PL toxicity in retinoblastoma cell lines was inhibited by a ROS scavenger N-acetyl-l-cysteine (NAC) treatment. These findings suggest that PL reduces tumor growth and induces cell death by regulating the cell cycle.

7.
Front Cell Dev Biol ; 9: 625560, 2021.
Article in English | MEDLINE | ID: mdl-33634125

ABSTRACT

Retinal dystrophies (RD) are a group of Mendelian disorders caused by rare genetic variations leading to blindness. A pathogenic variant may manifest in both dominant or recessive mode and clinical and genetic heterogeneity makes it difficult to establish a precise diagnosis. In this study, families with autosomal dominant RD in successive generations were identified, and we aimed to determine the disease's molecular origin in these consanguineous families. Whole exome sequencing was performed in the index patient of each family. The aim was to determine whether these cases truly represented examples of dominantly inherited RD, or whether another mode of inheritance might be applicable. Six potentially pathogenic variants in four genes were identified in four families. In index patient with enhanced S-cone syndrome in F1, we identified a new digenetic combination: a heterozygous variant p.[G51A];[=] in RHO and a homozygous pathogenic variant p.[R311Q];[R311Q] in NR2E3. Helicoid subretinal fibrosis associated with recessive NR2E3 variant p.[R311Q];[R311Q] was identified in F2. A new frameshift variant c.[105delG];[105delG] in RDH12 was found in F3 with cone-rod dystrophy. In F4, the compound heterozygous variants p.[R964*];[W758*] were observed in IMPG2 with a retinitis pigmentosa (RP) phenotype. We showed that both affected parents and the offspring, were homozygous for the same variants in all four families. Our results provide evidence that in consanguineous families, autosomal recessive can be transmitted as pseudodominant inheritance in RD patients, and further extend our knowledge of pathogenic variants in RD genes.

8.
PLoS One ; 16(1): e0245239, 2021.
Article in English | MEDLINE | ID: mdl-33465110

ABSTRACT

H6 family homeobox 1 (HMX1) regulates multiple aspects of craniofacial development as it is widely expressed in the eye, peripheral ganglia and branchial arches. Mutations in HMX1 are linked to an ocular defect termed Oculo-auricular syndrome of Schorderet-Munier-Franceschetti (MIM #612109). We identified UHRF1 as a target of HMX1 during development. UHRF1 and its partner proteins actively regulate chromatin modifications and cellular proliferation. Luciferase assays and in situ hybridization analyses showed that HMX1 exerts a transcriptional inhibitory effect on UHRF1 and a modification of its expression pattern. Overexpression of hmx1 in hsp70-hmx1 zebrafish increased uhrf1 expression in the cranial region, while mutations in the hmx1 dimerization domains reduced uhrf1 expression. Moreover, the expression level of uhrf1 and its partner dnmt1 was increased in the eye field in response to hmx1 overexpression. These results indicate that hmx1 regulates uhrf1 expression and, potentially through regulating the expression of factors involved in DNA methylation, contribute to the development of the craniofacial region of zebrafish.


Subject(s)
Eye/metabolism , Homeodomain Proteins/metabolism , Trans-Activators/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified/metabolism , Dimerization , Embryo, Nonmammalian/metabolism , Eye/growth & development , Gene Expression Regulation, Developmental , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Mutagenesis , Promoter Regions, Genetic , Trans-Activators/genetics , Zebrafish/growth & development , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics
9.
Sci Rep ; 10(1): 11199, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32641690

ABSTRACT

We report the molecular basis of the largest Tunisian cohort with inherited retinal dystrophies (IRD) reported to date, identify disease-causing pathogenic variants and describe genotype-phenotype correlations. A subset of 26 families from a cohort of 73 families with clinical diagnosis of autosomal recessive IRD (AR-IRD) excluding Usher syndrome was analyzed by whole exome sequencing and autozygosity mapping. Causative pathogenic variants were identified in 50 families (68.4%), 42% of which were novel. The most prevalent pathogenic variants were observed in ABCA4 (14%) and RPE65, CRB1 and CERKL (8% each). 26 variants (8 novel and 18 known) in 19 genes were identified in 26 families (14 missense substitutions, 5 deletions, 4 nonsense pathogenic variants and 3 splice site variants), with further allelic heterogeneity arising from different pathogenic variants in the same gene. The most common phenotype in our cohort is retinitis pigmentosa (23%) and cone rod dystrophy (23%) followed by Leber congenital amaurosis (19.2%). We report the association of new disease phenotypes. This research was carried out in Tunisian patients with IRD in order to delineate the genetic population architecture.


Subject(s)
Genetic Testing/statistics & numerical data , Retinal Dystrophies/genetics , ATP-Binding Cassette Transporters/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Eye Proteins/genetics , Female , Humans , Infant , Male , Membrane Proteins/genetics , Middle Aged , Mutation , Nerve Tissue Proteins/genetics , Pedigree , Phosphotransferases (Alcohol Group Acceptor)/genetics , Prevalence , Retinal Dystrophies/congenital , Retinal Dystrophies/diagnosis , Retinal Dystrophies/epidemiology , Tunisia/epidemiology , Exome Sequencing , Young Adult , cis-trans-Isomerases/genetics
11.
Lab Anim ; 54(3): 213-224, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31510859

ABSTRACT

This article provides recommendations for the care of laboratory zebrafish (Danio rerio) as part of the further implementation of Annex A to the European Convention on the protection of vertebrate animals used for experimental and other scientific purposes, EU Commission Recommendation 2007/526/EC and the fulfilment of Article 33 of EU Directive 2010/63, both concerning the housing and care of experimental animals. The recommendations provide guidance on best practices and ranges of husbandry parameters within which zebrafish welfare, as well as reproducibility of experimental procedures, are assured. Husbandry procedures found today in zebrafish facilities are numerous. While the vast majority of these practices are perfectly acceptable in terms of zebrafish physiology and welfare, the reproducibility of experimental results could be improved by further standardisation of husbandry procedures and exchange of husbandry information between laboratories. Standardisation protocols providing ranges of husbandry parameters are likely to be more successful and appropriate than the implementation of a set of fixed guidance values neglecting the empirically successful daily routines of many facilities and will better reflect the wide range of environmental parameters that characterise the natural habitats occupied by zebrafish. A joint working group on zebrafish housing and husbandry recommendations, with members of the European Society for Fish Models in Biology and Medicine (EUFishBioMed) and of the Federation of European Laboratory Animal Science Associations (FELASA) has been given a mandate to provide guidelines based on a FELASA list of parameters, 'Terms of Reference'.


Subject(s)
Animal Husbandry/standards , Animals, Laboratory/physiology , Guidelines as Topic , Housing, Animal/standards , Laboratory Animal Science/standards , Zebrafish/physiology , Animal Husbandry/methods , Animal Welfare/standards , Animals
12.
Genes (Basel) ; 10(12)2019 11 21.
Article in English | MEDLINE | ID: mdl-31766397

ABSTRACT

Mutations in BEST1 cause several phenotypes including autosomal dominant (AD) Best vitelliform macular dystrophy type 2 (BVMD), AD vitreo-retino-choroidopathy (ADVIRC), and retinitis pigmentosa-50 (RP50). A rare subtype of Bestrophinopathy exists with biallelic mutations in BEST1. Its frequency is estimated to be 1/1,000,000 individuals. Here we report 6 families and searched for a genotype-phenotype correlation. All patients were referred due to reduced best-corrected visual acuity (BCVA), ranging from 0.1/10 to 3/10. They all showed vitelliform lesions located at the macula, sometimes extending into the midperiphery, along the vessels and the optic disc. Onset of the disease varied from the age of 3 to 25 years. Electrooculogram (EOG) revealed reduction in the EOG light rise in all patients. Molecular analysis revealed previously reported mutations p.(E35K);(E35K), p.(L31M);(L31M), p.(R141H);(A195V), p.(R202W);(R202W), and p.(Q220*);(Q220*) in five families. One family showed a novel mutation: p.(E167G);(E167G). All mutations were heterozygous in the parents. In one family, heterozygous children showed various reductions in the EOG light rise and autofluorescent deposits. Autosomal recessive Bestrophinopathy (ARB), although rare, can be recognized by its phenotype and should be validated by molecular analysis. Genotype-phenotype correlations are difficult to establish and will require the analysis of additional cases.


Subject(s)
Eye Diseases, Hereditary , Retinal Diseases , Adolescent , Adult , Bestrophins/genetics , Child , Electrooculography , Electroretinography , Eye/physiopathology , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/physiopathology , Female , Genetic Association Studies , Humans , Male , Mutation , Pedigree , Retinal Diseases/diagnosis , Retinal Diseases/genetics , Retinal Diseases/physiopathology , Young Adult
13.
Hum Mutat ; 40(6): 675-693, 2019 06.
Article in English | MEDLINE | ID: mdl-30830990

ABSTRACT

Human transforming growth factor ß-induced (TGFBI), is a gene responsible for various corneal dystrophies. TGFBI produces a protein called TGFBI, which is involved in cell adhesion and serves as a recognition sequence for integrins. An alteration in cell surface interactions could be the underlying cause for the progressive accumulation of extracellular deposits in different layers of the cornea with the resulting changes of refractive index and transparency. To this date, 69 different pathogenic or likely pathogenic variants in TGFBI have been identified in a heterozygous or homozygous state in various corneal dystrophies, including a novel variant reported here. All disease-associated variants were inherited as autosomal-dominant traits but one; this latter was inherited as an autosomal recessive trait. Most corneal dystrophy-associated variants are located at amino acids Arg124 and Arg555. To keep the list of corneal dystrophy-associated variant current, we generated a locus-specific database for TGFBI (http://databases.lovd.nl/shared/variants/TGFBI) containing all pathogenic and likely pathogenic variants reported so far. Non-disease-associated variants are described in specific databases, like gnomAD and ExAC but are not listed here. This article presents the most recent up-to-date list of disease-associated variants.


Subject(s)
Corneal Dystrophies, Hereditary/genetics , Databases, Genetic , Extracellular Matrix Proteins/genetics , Mutation , Transforming Growth Factor beta/genetics , Amyloidosis, Familial/genetics , Arginine/metabolism , Extracellular Matrix Proteins/chemistry , Female , Genetic Predisposition to Disease , Humans , Male , Pedigree , Phenotype , Transforming Growth Factor beta/chemistry , Web Browser
14.
Hum Mutat ; 40(6): 765-787, 2019 06.
Article in English | MEDLINE | ID: mdl-30825406

ABSTRACT

Inherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in ~260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown. These cases may be explained by novel gene defects, by overlooked structural variants, by variants in intronic, promoter or more distant regulatory regions, and represent synonymous variants of known genes contributing to the dysfunction of the respective proteins. Patients with one subgroup of IRD, namely incomplete congenital stationary night blindness (icCSNB), show a very specific phenotype. The major cause of this condition is the presence of a hemizygous pathogenic variant in CACNA1F. A comprehensive study applying direct Sanger sequencing of the gene-coding regions, exome and genome sequencing applied to a large cohort of patients with a clinical diagnosis of icCSNB revealed indeed that seven of the 189 CACNA1F-related cases have intronic and synonymous disease-causing variants leading to missplicing as validated by minigene approaches. These findings highlight that gene-locus sequencing may be a very efficient method in detecting disease-causing variants in clinically well-characterized patients with a diagnosis of IRD, like icCSNB.


Subject(s)
Calcium Channels, L-Type/genetics , Eye Diseases, Hereditary/genetics , Genetic Diseases, X-Linked/genetics , Mutation , Myopia/genetics , Night Blindness/genetics , Sequence Analysis, DNA/methods , Genetic Predisposition to Disease , Hemizygote , Humans , Introns , Male , Pedigree , RNA Splicing , Silent Mutation
15.
Klin Monbl Augenheilkd ; 236(4): 451-461, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30831606

ABSTRACT

BACKGROUND: Inherited optic neuropathies (IONs) cover a spectrum of clinically and genetically heterogenic conditions. Genetic evaluation of patients with IONs may enable their better clinico-diagnostic assessment and management of the disease. The aim of the present study was to determine the genetic condition related to the phenotype in patients with diverse inherited optic neuropathies. PATIENTS AND METHODS: A retrospective study was performed in 12 adults and 8 children of 8 non-related families. Clinical phenotyping, supported by color fundus, FAF, and OCT imaging, was performed. Genetic testing was obtained for all family members suspected for ION. RESULTS: Identification of pathogenic mutations in eight non-related families helped to confirm the diagnosis of ION. Affected from ION were ten patients (eight adults and two children; four women and six men). Bilateral Leber's hereditary optic neuropathy (LHON) was linked to the m.11778G>A mutation in two families (two affected and five carriers). Secondary homoplasmic LHON mutations in MT-ND1 (m.4216T>C) and MT-CO3 genes (m.9804G>A) were confirmed in two families (each one subject, three eyes affected), without detection of a primary LHON mutation. One member presented a picture of right-sited optic neuropathy associated with a c.220C>G mutation in the ACO2 gene and a heterozygous c.185C>T mutation in the LDLR gene. Autosomal dominant optic atrophy was confirmed in three non-related families (five subjects with bilateral ION), where molecular genetic analyses confirmed four different heterozygous mutations in OPA1: c.1847+1G>T; c.2497-1G>A, 297A>G and c.(2983+1_2984-1)_(c.*3211) (2 splicing mutations, 1 missense mutation, and 1 gross deletion encompassing exons 30 and 31). CONCLUSIONS: Combining clinics and molecular genetics when evaluating patients with IONs helps in characterizing disease and, therefore, is strongly recommended for such patients.


Subject(s)
Optic Atrophy, Autosomal Dominant , Optic Atrophy, Hereditary, Leber , Adult , Child , DNA, Mitochondrial , Female , Humans , Male , Mutation , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Hereditary, Leber/genetics , Pedigree , Retrospective Studies
16.
Ophthalmic Genet ; 39(5): 637-641, 2018 10.
Article in English | MEDLINE | ID: mdl-30067412

ABSTRACT

BACKGROUND: We present a macular dystrophy of differing severity in a single kindred caused by a heterozygous nonsense mutation in CRX. CASE REPORT: A 21-year-old Caucasian male from a Swiss family was investigated for decreasing central visual acuity associated with dischromatopsia. Clinical examination revealed posterior pole atrophy, including the maculopapillary bundle. Multimodal imaging, including autofluorescence, showed a hyperautofluorescent paramacular ring in both eyes. Genetic analysis identified a c.313C>T, p.Q105* nonsense mutation in CRX. The same mutation was identified in his father and uncle. Both of them showed signs of the disease, however with different severity. CONCLUSION: We describe an intrafamilial variable expressivity of a CRX mutation causing an isolated macular dystrophy.


Subject(s)
Codon, Nonsense , Homeodomain Proteins/genetics , Macular Degeneration/genetics , Macular Degeneration/pathology , Severity of Illness Index , Trans-Activators/genetics , Adult , Female , Heterozygote , Humans , Male , Pedigree , Prognosis , Young Adult
17.
J Ophthalmol ; 2018: 1030184, 2018.
Article in English | MEDLINE | ID: mdl-29736279

ABSTRACT

To assess the progression of Stargardt (STGD) disease over nine years in two branches of a large consanguineous Tunisian family. Initially, different phenotypes were observed with clinical intra- and interfamilial variations. At presentation, four different retinal phenotypes were observed. In phenotype 1, bull's eye maculopathy and slight alteration of photopic responses in full-field electroretinography were observed in the youngest child. In phenotype 2, macular atrophy and yellow white were observed in two brothers. In phenotype 3, diffuse macular, peripapillary, and peripheral RPE atrophy and hyperfluorescent dots were observed in two sisters. In phenotype 4, Stargardt disease-fundus flavimaculatus phenotype was observed in two cousins with later age of onset. After a progression of 9 years, all seven patients displayed the same phenotype 3 with advanced stage STGD and diffuse atrophy. WES and MLPA identified two ABCA4 mutations M1: c.[(?_4635)_(5714+?)dup; (?_6148)_(6479_+?) del] and M2: c.[2041C>T], p.[R681∗]. In one branch, the three affected patients had M1/M1 causal mutations and in the other branch the two affected patients had M1/M2 causal mutations. After 9-year follow-up, all patients showed the same phenotypic evolution, confirming the progressive nature of the disease. Genetic variations in the two branches made no difference to similar end-stage disease.

18.
Eye (Lond) ; 32(7): 1209-1219, 2018 07.
Article in English | MEDLINE | ID: mdl-29507331

ABSTRACT

PURPOSE: Primary objective-to investigate the effect of retinal vessel oxygen saturation (SO2) on macular oedema (ME) in retinitis pigmentosa (RP) patients. Secondary objective-to link the presence of ME to metabolic (oxygen saturation of retinal vessels, SO2), functional (multifocal electroretinography, mfERG) and structural (Spectral Domain Optical Coherent Tomography, SD-OCT) alterations in RP. DESIGN: Prospective, cross-sectional, non-interventional study. SUBJECTS: Patients with typical RP (N = 37) and controls (N = 19), who underwent retinal vessel Oximetry (RO), SD-OCT and mfERG, were included. METHODS: A computer-based program of the retinal vessel analyser unit (IMEDOS Systems UG, Jena, Germany) was used to measure SO2. We evaluated the mean SO2, in all major retinal arterioles (oxygen saturation in retinal arterioles, A-SO2, %) and venules (oxygen saturation in retinal venules, V-SO2, %). MfERG responses were averaged in zones (zone 1 (0-3°), zone 2 (3-8°) and zone 3 (8-15°)) and compared to corresponding areas of the OCT. The effect of ME on SO2 was evaluated dividing the RP in two subgroups: with clinical appearance of ME (ME-RP) and without it (no-ME-RP). MAIN OUTCOME MEASURES: Parallel recording and juxtaposition of metabolic (SO2) to structural (OCT) and functional-(mfERG) measures. Mean ( ± SD) A-SO2 and V-SO2 were higher in no-ME-RP (96.77% (±6.31) and 59.93% (±7.76)) and even higher in the ME-RP (99.82% (±6.21) and 65.63% (±7.63)), compared to controls (93.15% (±3.76) and 53.77% (±3.70), p ≤ 0.006). RESULTS: The subgroup ME-RP differed significantly from the subgroup no-ME-RP by increased A-SO2 and V-SO2, p ≤ 0.026. The presence of ME confirmed a different relationship between the altered SO2 and the vessel diameters, against the functional and structural parameters. CONCLUSION: Based on our results, the presence of macular oedema indicates a tendency toward greater alteration of the metabolic function in RP patients.


Subject(s)
Macular Edema/physiopathology , Oxygen/metabolism , Retinal Vessels/metabolism , Retinitis Pigmentosa/physiopathology , Adult , Case-Control Studies , Cross-Sectional Studies , Electroretinography , Female , Humans , Macular Edema/etiology , Macular Edema/metabolism , Male , Middle Aged , Oximetry , Prospective Studies , Regression Analysis , Retina/physiopathology , Retinal Vessels/physiopathology , Retinitis Pigmentosa/complications , Tomography, Optical Coherence , Visual Acuity/physiology , Young Adult
19.
Hum Mol Genet ; 26(21): 4203-4214, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29088427

ABSTRACT

Membrane transporters influence biological functions in the ocular lens. Here, we investigate the monocarboxylate transporter 12 (MCT12), also called creatine transporter 2 (CRT2), which is found in the ocular lens and is involved in cataract. As the age-related form affects about half of the population world-wide, understanding relevant pathomechanisms is a prerequisite for exploring non-invasive treatments. We screened the coding exons of the gene SLC16A12 in 877 patients from five cohorts, including Caucasian and Asian ethnicities. A previously identified risk factor, SNP rs3740030, displayed different frequencies in the Asian cohorts but risk could not be established. In 15 patients 13 very rare heterozygous nucleotide substitutions were identified, of which eight led to non-synonymous and four to synonymous amino acid exchanges and one mapped to the canonical splice site in intron 3. Their impact on creatine transport was tested in Xenopus laevis oocytes and human HEK293T cells. Four variants (p.Ser158Pro, p.Gly205Val, p.Pro395Gln and p.Ser453Arg) displayed severe reduction in both model systems, indicating conserved function. Two of these, p.Gly205Val, and p.Ser453Arg, did not localize to the oocyte membrane, suggesting possible impacts on protein interactions for transporter processing. In support, exogenously supplied excess of MCT12's chaperone CD147 in HEK293T cells led to a partial recovery of the defective uptake activity from p.Gly205Val and also from mutant p.Pro395Gln, which did localize to the membrane. Our findings provide first insight in the molecular requirements of creatine transporter, with particular emphasis on rescuing effects by its chaperone CD147, which can provide useful pharmacological information for substrate delivery.


Subject(s)
Basigin/administration & dosage , Cataract/drug therapy , Cataract/metabolism , Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/metabolism , Age Factors , Aged , Aged, 80 and over , Animals , Basigin/pharmacology , Cataract/genetics , Cohort Studies , Genetic Predisposition to Disease , HEK293 Cells , Humans , Lens, Crystalline/metabolism , Male , Membrane Transport Proteins/genetics , Middle Aged , Monocarboxylic Acid Transporters/genetics , Risk Factors , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...