Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Clin Apher ; 39(3): e22114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38708583

ABSTRACT

BACKGROUND: Stem cell apheresis in the context of autologous stem cell transplantation requires an accurate cluster of differentiantion 34 (CD34+) count determined by flow cytometry as the current gold standard. Since flow cytometry is a personnel and time-intensive diagnostic tool, automated stem cell enumeration may provide a promising alternative. Hence, this study aimed to compare automated hematopoietic progenitor enumeration carried out on a Sysmex XN-20 module compared with conventional flow cytometric measurements. METHODS: One hundred forty-three blood samples from 41 patients were included in this study. Correlation between the two methods was calculated over all samples, depending on leukocyte count and diagnosis. RESULTS: Overall, we found a high degree of correlation (r = 0.884). Furthermore, correlation was not impaired by elevated leukocyte counts (>10 000/µL, r = 0.860 vs <10 000/µL, r = 0.849; >20 000/µL, r = 0.843 vs <20 000/µL, r = 0.875). However, correlation was significantly impaired in patients with multiple myeloma (multiple myeloma r = 0.840 vs nonmyeloma r = 0.934). SUMMARY: Stem cell measurement carried out on the Sysmex XN-20 module provides a significant correlation with flow cytometry and might be implemented in clinical practice. In clinical decision-making, there was discrepancy of under 15% of cases. In multiple myeloma patients, XN-20 should be used with caution.


Subject(s)
Antigens, CD34 , Flow Cytometry , Hematopoietic Stem Cells , Adult , Female , Humans , Male , Antigens, CD34/analysis , Antigens, CD34/blood , Blood Cell Count/methods , Blood Cell Count/instrumentation , Flow Cytometry/methods , Hematopoietic Stem Cells/cytology , Leukocyte Count/methods , Multiple Myeloma/blood , Multiple Myeloma/diagnosis
2.
Proteomes ; 12(1)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38390966

ABSTRACT

Many challenges in proteomics result from the high-throughput nature of the experiments. This paper first presents pre-analytical problems, which still occur, although the call for standardization in omics has been ongoing for many years. This article also discusses aspects that affect bioinformatic analysis based on three sets of reference data measured with different orbitrap instruments. Despite continuous advances in mass spectrometer technology as well as analysis software, data-set-wise quality control is still necessary, and decoy-based estimation, although challenged by modern instruments, should be utilized. We draw attention to the fact that numerous young researchers perceive proteomics as a mature, readily applicable technology. However, it is important to emphasize that the maximum potential of the technology can only be realized by an educated handling of its limitations.

3.
Int J Mol Sci ; 25(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38255812

ABSTRACT

Diagnosing urothelial cancer (UCa) via invasive cystoscopy is painful, specifically in men, and can cause infection and bleeding. Because the UCa risk is higher for male patients, urinary non-invasive UCa biomarkers are highly desired to stratify men for invasive cystoscopy. We previously identified multiple DNA methylation sites in urine samples that detect UCa with a high sensitivity and specificity in men. Here, we identified the most relevant markers by employing multiple statistical approaches and machine learning (random forest, boosted trees, LASSO) using a dataset of 251 male UCa patients and 111 controls. Three CpG sites located in ALOX5, TRPS1 and an intergenic region on chromosome 16 have been concordantly selected by all approaches, and their combination in a single decision matrix for clinical use was tested based on their respective thresholds of the individual CpGs. The combination of ALOX5 and TRPS1 yielded the best overall sensitivity (61%) at a pre-set specificity of 95%. This combination exceeded both the diagnostic performance of the most sensitive bioinformatic approach and that of the best single CpG. In summary, we showed that overlap analysis of multiple statistical approaches identifies the most reliable biomarkers for UCa in a male collective. The results may assist in stratifying men for cystoscopy.


Subject(s)
Body Fluids , Fingers/abnormalities , Hair Diseases , Langer-Giedion Syndrome , Neoplasms , Nose/abnormalities , Male , Humans , Biomarkers, Tumor/genetics , DNA Methylation , Machine Learning , DNA, Neoplasm , Repressor Proteins
4.
Cell Mol Life Sci ; 80(9): 260, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37594553

ABSTRACT

Oligodendrocytes are generated via a two-step mechanism from pluripotent neural stem cells (NSCs): after differentiation of NSCs to oligodendrocyte precursor/NG2 cells (OPCs), they further develop into mature oligodendrocytes. The first step of this differentiation process is only incompletely understood. In this study, we utilized the neurosphere assay to investigate NSC to OPC differentiation in a time course-dependent manner by mass spectrometry-based (phospho-) proteomics. We identify doublecortin-like kinase 1 (Dclk1) as one of the most prominently regulated proteins in both datasets, and show that it undergoes a gradual transition between its short/long isoform during NSC to OPC differentiation. This is regulated by phosphorylation of its SP-rich region, resulting in inhibition of proteolytic Dclk1 long cleavage, and therefore Dclk1 short generation. Through interactome analyses of different Dclk1 isoforms by proximity biotinylation, we characterize their individual putative interaction partners and substrates. All data are available via ProteomeXchange with identifier PXD040652.


Subject(s)
Neural Stem Cells , Oligodendrocyte Precursor Cells , Cell Differentiation , Doublecortin-Like Kinases , Oligodendroglia , Phosphorylation , Protein Serine-Threonine Kinases , Proteomics
5.
Biomolecules ; 13(3)2023 03 07.
Article in English | MEDLINE | ID: mdl-36979426

ABSTRACT

Proteomic studies using mass spectrometry (MS)-based quantification are a main approach to the discovery of new biomarkers. However, a number of analytical conditions in front and during MS data acquisition can affect the accuracy of the obtained outcome. Therefore, comprehensive quality assessment of the acquired data plays a central role in quantitative proteomics, though, due to the immense complexity of MS data, it is often neglected. Here, we address practically the quality assessment of quantitative MS data, describing key steps for the evaluation, including the levels of raw data, identification and quantification. With this, four independent datasets from cerebrospinal fluid, an important biofluid for neurodegenerative disease biomarker studies, were assessed, demonstrating that sample processing-based differences are already reflected at all three levels but with varying impacts on the quality of the quantitative data. Specifically, we provide guidance to critically interpret the quality of MS data for quantitative proteomics. Moreover, we provide the free and open source quality control tool MaCProQC, enabling systematic, rapid and uncomplicated data comparison of raw data, identification and feature detection levels through defined quality metrics and a step-by-step quality control workflow.


Subject(s)
Neurodegenerative Diseases , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Proteome/analysis , Proteomics/methods , Biomarkers/analysis , Quality Control
6.
Cells ; 11(22)2022 11 09.
Article in English | MEDLINE | ID: mdl-36428966

ABSTRACT

Neuromelanin granules (NMGs) are organelle-like structures present in the human substantia nigra pars compacta. In addition to neuromelanin, NMGs contain proteins, lipids and metals. As NMG-containing dopaminergic neurons are preferentially lost in Parkinson's disease and dementia with Lewy bodies (DLB), it is assumed that NMGs may play a role in neurodegenerative processes. Until now, this role is not completely understood and needs further investigation. We therefore set up an exploratory proteomic study to identify differences in the proteomic profile of NMGs from DLB patients (n = 5) compared to healthy controls (CTRL, n = 5). We applied a laser microdissection and mass-spectrometry-based approach, in which we used targeted mass spectrometric experiments for validation. In NMG-surrounding (SNSurr.) tissue of DLB patients, we found evidence for ongoing oxidative damage and an impairment of protein degradation. As a potentially disease-related mechanism, we found α-synuclein and protein S100A9 to be enriched in NMGs of DLB cases, while the abundance of several ribosomal proteins was significantly decreased. As S100A9 is known to be able to enhance the formation of toxic α-synuclein fibrils, this finding points towards an involvement of NMGs in pathogenesis, however the exact role of NMGs as either neuroprotective or neurotoxic needs to be further investigated. Nevertheless, our study provides evidence for an impairment of protein degradation, ongoing oxidative damage and accumulation of potentially neurotoxic protein aggregates to be central mechanisms of neurodegeneration in DLB.


Subject(s)
Lewy Body Disease , Proteome , Humans , alpha-Synuclein , Proteomics
7.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36232544

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a major risk factor for the development of lung adenocarcinoma (AC). AC often develops on underlying COPD; thus, the differentiation of both entities by biomarker is challenging. Although survival of AC patients strongly depends on early diagnosis, a biomarker panel for AC detection and differentiation from COPD is still missing. Plasma samples from 176 patients with AC with or without underlying COPD, COPD patients, and hospital controls were analyzed using mass-spectrometry-based proteomics. We performed univariate statistics and additionally evaluated machine learning algorithms regarding the differentiation of AC vs. COPD and AC with COPD vs. COPD. Univariate statistics revealed significantly regulated proteins that were significantly regulated between the patient groups. Furthermore, random forest classification yielded the best performance for differentiation of AC vs. COPD (area under the curve (AUC) 0.935) and AC with COPD vs. COPD (AUC 0.916). The most influential proteins were identified by permutation feature importance and compared to those identified by univariate testing. We demonstrate the great potential of machine learning for differentiation of highly similar disease entities and present a panel of biomarker candidates that should be considered for the development of a future biomarker panel.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Biomarkers , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Proteomics , Pulmonary Disease, Chronic Obstructive/pathology
8.
PLoS One ; 17(10): e0276401, 2022.
Article in English | MEDLINE | ID: mdl-36269744

ABSTRACT

In bottom-up proteomics, proteins are enzymatically digested into peptides before measurement with mass spectrometry. The relationship between proteins and their corresponding peptides can be represented by bipartite graphs. We conduct a comprehensive analysis of bipartite graphs using quantified peptides from measured data sets as well as theoretical peptides from an in silico digestion of the corresponding complete taxonomic protein sequence databases. The aim of this study is to characterize and structure the different types of graphs that occur and to compare them between data sets. We observed a large influence of the accepted minimum peptide length during in silico digestion. When changing from theoretical peptides to measured ones, the graph structures are subject to two opposite effects. On the one hand, the graphs based on measured peptides are on average smaller and less complex compared to graphs using theoretical peptides. On the other hand, the proportion of protein nodes without unique peptides, which are a complicated case for protein inference and quantification, is considerably larger for measured data. Additionally, the proportion of graphs containing at least one protein node without unique peptides rises when going from database to quantitative level. The fraction of shared peptides and proteins without unique peptides as well as the complexity and size of the graphs highly depends on the data set and organism. Large differences between the structures of bipartite peptide-protein graphs have been observed between database and quantitative level as well as between analyzed species. In the analyzed measured data sets, the proportion of protein nodes without unique peptides ranged from 6.4% to 55.0%. This highlights the need for novel methods that can quantify proteins without unique peptides. The knowledge about the structure of the bipartite peptide-protein graphs gained in this study will be useful for the development of such algorithms.


Subject(s)
Peptides , Proteins , Proteins/chemistry , Peptides/chemistry , Databases, Protein , Proteomics/methods , Mass Spectrometry/methods
9.
Int J Mol Sci ; 23(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36233322

ABSTRACT

Desmin mutations cause familial and sporadic cardiomyopathies. In addition to perturbing the contractile apparatus, both desmin deficiency and mutated desmin negatively impact mitochondria. Impaired myocardial metabolism secondary to mitochondrial defects could conceivably exacerbate cardiac contractile dysfunction. We performed metabolic myocardial phenotyping in left ventricular cardiac muscle tissue in desmin knock-out mice. Our analyses revealed decreased mitochondrial number, ultrastructural mitochondrial defects, and impaired mitochondria-related metabolic pathways including fatty acid transport, activation, and catabolism. Glucose transporter 1 and hexokinase-1 expression and hexokinase activity were increased. While mitochondrial creatine kinase expression was reduced, fetal creatine kinase expression was increased. Proteomic analysis revealed reduced expression of proteins involved in electron transport mainly of complexes I and II, oxidative phosphorylation, citrate cycle, beta-oxidation including auxiliary pathways, amino acid catabolism, and redox reactions and oxidative stress. Thus, desmin deficiency elicits a secondary cardiac mitochondriopathy with severely impaired oxidative phosphorylation and fatty and amino acid metabolism. Increased glucose utilization and fetal creatine kinase upregulation likely portray attempts to maintain myocardial energy supply. It may be prudent to avoid medications worsening mitochondrial function and other metabolic stressors. Therapeutic interventions for mitochondriopathies might also improve the metabolic condition in desmin deficient hearts.


Subject(s)
Cardiomyopathies , Desmin , Hexokinase , Amino Acids/metabolism , Animals , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Citrates/metabolism , Creatine Kinase, Mitochondrial Form/metabolism , Desmin/genetics , Desmin/metabolism , Fatty Acids/metabolism , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Mice , Mice, Knockout , Myocardium/metabolism , Oxidative Phosphorylation , Proteomics
10.
J Neural Transm (Vienna) ; 129(10): 1257-1270, 2022 10.
Article in English | MEDLINE | ID: mdl-35852604

ABSTRACT

Neuromelanin is a black-brownish pigment, present in so-called neuromelanin granules (NMGs) in the cell bodies of dopaminergic neurons in the substantia nigra (SN) pars compacta. These neurons are lost in neurodegenerative diseases, such as Parkinson's disease and dementia with Lewy bodies. Although it is known that lipids, proteins, and environmental toxins accumulate in NMGs, the function of NMGs has not yet been finally clarified as well as their origin and the synthesis of neuromelanin. We, therefore, isolated NMGs and surrounding SN tissue from control patients by laser microdissection and analyzed the proteomic profile by tandem mass spectrometry. With our improved workflow, we were able to (1) strengthen the regularly reported link between NMGs and lysosomes, (2) detect tyrosine hydroxylase to be highly abundant in NMGs, which may be related to neuromelanin synthesis and (3) indicate a yet undescribed link between stress granules (SGs) and NMGs. Based on our findings, we cautiously hypothesize, that SGs may be the origin of NMGs or form in close proximity to them, potentially due to the oxidative stress caused by neuromelanin-bound metals.


Subject(s)
Proteomics , Tyrosine 3-Monooxygenase , Humans , Lysosomes/metabolism , Melanins/metabolism , Proteomics/methods , Stress Granules , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
11.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35131898

ABSTRACT

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2-infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Transcriptome , Virus Replication/drug effects , Animals , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cloning, Molecular , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Profiling , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Mice , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/pharmacology , Recombinant Proteins/classification , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Signal Transduction , Vero Cells
13.
Cancers (Basel) ; 13(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34771457

ABSTRACT

(1) Background: Neuroblastomas (NBs) are the most common extracranial solid tumors of children. The amplification of the Myc-N proto-oncogene (MYCN) is a major driver of NB aggressiveness, while high expression of the neurotrophin receptor NTRK1/TrkA is associated with mild disease courses. The molecular effects of NTRK1 signaling in MYCN-amplified NB, however, are still poorly understood and require elucidation. (2) Methods: Inducible NTRK1 expression was realized in four NB cell lines with (IMR5, NGP) or without MYCN amplification (SKNAS, SH-SY5Y). Proteome and phosphoproteome dynamics upon NTRK1 activation by its ligand, NGF, were analyzed in a time-dependent manner in IMR5 cells. Target validation by immunofluorescence staining and automated image processing was performed using the three other NB cell lines. (3) Results: In total, 230 proteins and 134 single phosphorylated class I phosphosites were found to be significantly regulated upon NTRK1 activation. Among known NTRK1 targets, Stathmin and the neurosecretory protein VGF were recovered. Additionally, we observed the upregulation and phosphorylation of Lamin A/C (LMNA) that accumulated inside nuclear foci. (4) Conclusions: We provide a comprehensive picture of NTRK1-induced proteome and phosphoproteome dynamics. The phosphorylation of LMNA within nucleic aggregates was identified as a prominent feature of NTRK1 signaling independent of the MYCN status of NB cells.

14.
Proteomes ; 9(2)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201234

ABSTRACT

Skeletal muscle is a heterogeneous tissue consisting of blood vessels, connective tissue, and muscle fibers. The last are highly adaptive and can change their molecular composition depending on external and internal factors, such as exercise, age, and disease. Thus, examination of the skeletal muscles at the fiber type level is essential to detect potential alterations. Therefore, we established a protocol in which myosin heavy chain isoform immunolabeled muscle fibers were laser microdissected and separately investigated by mass spectrometry to develop advanced proteomic profiles of all murine skeletal muscle fiber types. All data are available via ProteomeXchange with the identifier PXD025359. Our in-depth mass spectrometric analysis revealed unique fiber type protein profiles, confirming fiber type-specific metabolic properties and revealing a more versatile function of type IIx fibers. Furthermore, we found that multiple myopathy-associated proteins were enriched in type I and IIa fibers. To further optimize the assignment of fiber types based on the protein profile, we developed a hypothesis-free machine-learning approach, identified a discriminative peptide panel, and confirmed our panel using a public data set.

15.
Front Oncol ; 11: 623144, 2021.
Article in English | MEDLINE | ID: mdl-34136378

ABSTRACT

Therapeutic strategies for patients with locally advanced rectal cancer (LARC) who are achieving a pathological complete response (pCR) after neoadjuvant radio-chemotherapy (neoCRT) are being increasingly investigated. Recent trials challenge the current standard therapy of total mesorectal excision (TME). For some patients, the treatment strategy of "watch-and-wait" seems a preferable procedure. The key factor in determining individual treatment strategies following neoCRT is the precise evaluation of the tumor response. Contrast-enhanced computer tomography (ceCT) has proven its ability to discriminate benign and malign lesions in multiple cancers. In this study, we retrospectively analyzed the ceCT based density of LARC in 30 patients, undergoing neoCRT followed by TME. We compared the tumors´ pre- and post-neoCRT density and correlated the results to the amount of residual vital tumor cells in the resected tissue. Overall, the density decreased after neoCRT, with the highest decrease in patients achieving pCR. Densitometry demonstrated a specificity of 88% and sensitivity of 68% in predicting pCR. Thus, we claim that ceCT based densitometry is a useful tool in identifying patients with LARC who may benefit from a "watch-and-wait" strategy and suggest further prospective studies.

16.
Methods Mol Biol ; 2228: 1-20, 2021.
Article in English | MEDLINE | ID: mdl-33950479

ABSTRACT

Mass spectrometry is frequently used in quantitative proteomics to detect differentially regulated proteins. A very important but unfortunately oftentimes neglected part in detecting differential proteins is the statistical analysis. Data from proteomics experiments are usually high-dimensional and hence require profound statistical methods. It is especially important to already correctly design a proteomic experiment before it is conducted in the laboratory. Only this can ensure that the statistical analysis is capable of detecting truly differential proteins afterward. This chapter thus covers aspects of both statistical planning as well as the actual analysis of quantitative proteomic experiments.


Subject(s)
Mass Spectrometry/statistics & numerical data , Proteins/analysis , Proteome , Proteomics/statistics & numerical data , Research Design/statistics & numerical data , Animals , Data Interpretation, Statistical , Humans , Models, Statistical
17.
PLoS One ; 16(3): e0247930, 2021.
Article in English | MEDLINE | ID: mdl-33760831

ABSTRACT

Prostate cancer (PCa) is the most common cancer and the third most frequent cause of male cancer death in Germany. MicroRNAs (miRNA) appear to be involved in the development and progression of PCa. A diagnostic differentiation from benign prostate hyperplasia (BPH) is often only possible through transrectal punch biopsy. This procedure is described as painful and carries risks. It was investigated whether urinary miRNAs can be used as biomarkers to differentiate the prostate diseases above. Therefore urine samples from urological patients with BPH (25) or PCa (28) were analysed using Next-Generation Sequencing to detect the expression profile of total and exosomal miRNA/piRNA. 79 miRNAs and 5 piwi-interacting RNAs (piRNAs) were significantly differentially expressed (adjusted p-value < 0.05 and log2-Fc > 1 or < -1). Of these, 6 miRNAs and 2 piRNAs could be statistically validated (AUC on test cohort > = 0.7). In addition, machine-learning algorithms were used to identify a panel of 22 additional miRNAs, whose interaction makes it possible to differentiate the groups as well. There are promising individual candidates for potential use as biomarkers in prostate cancer. The innovative approach of applying machine learning methods to this kind of data could lead to further small RNAs coming into scientific focus, which have so far been neglected.


Subject(s)
MicroRNAs/metabolism , Prostate/metabolism , Prostatic Diseases/diagnosis , Prostatic Neoplasms/diagnosis , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Biopsy , Diagnosis, Differential , High-Throughput Nucleotide Sequencing , Humans , Male , MicroRNAs/genetics , Middle Aged , Prostate/pathology , Prostatic Diseases/genetics , Prostatic Diseases/metabolism , Prostatic Diseases/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology
18.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: mdl-33589928

ABSTRACT

This article describes some use case studies and self-assessments of FAIR status of de.NBI services to illustrate the challenges and requirements for the definition of the needs of adhering to the FAIR (findable, accessible, interoperable and reusable) data principles in a large distributed bioinformatics infrastructure. We address the challenge of heterogeneity of wet lab technologies, data, metadata, software, computational workflows and the levels of implementation and monitoring of FAIR principles within the different bioinformatics sub-disciplines joint in de.NBI. On the one hand, this broad service landscape and the excellent network of experts are a strong basis for the development of useful research data management plans. On the other hand, the large number of tools and techniques maintained by distributed teams renders FAIR compliance challenging.


Subject(s)
Data Management/methods , Metadata , Neural Networks, Computer , Proteomics/methods , Software , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , International Cooperation , Phenotype , Plants/genetics , Proteome , Self-Assessment , Workflow
19.
J Vis Exp ; (178)2021 12 16.
Article in English | MEDLINE | ID: mdl-34978295

ABSTRACT

Neuromelanin is a black-brownish pigment, present in so-called neuromelanin granules (NMGs) in dopaminergic neurons of the substantia nigra pars compacta. Besides neuromelanin, NMGs contain a variety of proteins, lipids, and metals. Although NMGs-containing dopaminergic neurons are preferentially lost in neurodegenerative diseases like Parkinson's disease and dementia with Lewy bodies, only little is known about the mechanism of NMG formation and the role of NMGs in health and disease. Thus, further research on the molecular characterization of NMGs is essential. Unfortunately, standard protocols for the isolation of proteins are based on density gradient ultracentrifugation and therefore require high amounts of human tissue. Thus, an automated laser microdissection (LMD)-based protocol is established here which allows the collection of NMGs and surrounding substantia nigra (SN) tissue using minimal amounts of tissue in an unbiased, automatized way. Excised samples are subsequently analyzed by mass spectrometry to decipher their proteomic composition. With this workflow, 2,079 proteins were identified of which 514 proteins were exclusively identified in NMGs and 181 in SN. The present results have been compared with a previous study using a similar LMD-based approach reaching an overlap of 87.6% for both proteomes, verifying the applicability of the revised and optimized protocol presented here. To validate current findings, proteins of interest were analyzed by targeted mass spectrometry, e.g., parallel reaction monitoring (PRM)-experiments.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Chromatography, Liquid , Humans , Laser Capture Microdissection , Lasers , Melanins , Proteomics/methods , Substantia Nigra/metabolism
20.
Bioinform Adv ; 1(1): vbab015, 2021.
Article in English | MEDLINE | ID: mdl-36700097

ABSTRACT

Summary: Because of the steadily increasing and already manually unmanageable total number of biomarker-related articles in biomedical research, there is a need for intelligent systems that extract all relevant information from biomedical texts and provide it as structured information to researchers in a user-friendly way. To address this, BIONDA was implemented as a free text mining-based online database for molecular biomarkers including genes, proteins and miRNAs and for all kinds of diseases. The contained structured information on published biomarkers is extracted automatically from Europe PMC publication abstracts and high-quality sources like UniProt and Disease Ontology. This allows frequent content updates. Availability and implementation: BIONDA is freely accessible via a user-friendly web application at http://bionda.mpc.ruhr-uni-bochum.de. The current BIONDA code is available at GitHub via https://github.com/mpc-bioinformatics/bionda. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

SELECTION OF CITATIONS
SEARCH DETAIL
...