Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Miner Res ; 36(7): 1403-1415, 2021 07.
Article in English | MEDLINE | ID: mdl-33831261

ABSTRACT

High fracture rate and high circulating levels of the Wnt inhibitor, sclerostin, have been reported in diabetic patients. We studied the effects of Wnt signaling activation on bone health in a mouse model of insulin-deficient diabetes. We introduced the sclerostin-resistant Lrp5A214V mutation, associated with high bone mass, in mice carrying the Ins2Akita mutation (Akita), which results in loss of beta cells, insulin deficiency, and diabetes in males. Akita mice accrue less trabecular bone mass with age relative to wild type (WT). Double heterozygous Lrp5A214V /Akita mutants have high trabecular bone mass and cortical thickness relative to WT animals, as do Lrp5A214V single mutants. Likewise, the Lrp5A214V mutation prevents deterioration of biomechanical properties occurring in Akita mice. Notably, Lrp5A214V /Akita mice develop fasting hyperglycemia and glucose intolerance with a delay relative to Akita mice (7 to 8 vs. 5 to 6 weeks, respectively), despite lack of insulin production in both groups by 6 weeks of age. Although insulin sensitivity is partially preserved in double heterozygous Lrp5A214V /Akita relative to Akita mutants up to 30 weeks of age, insulin-dependent phosphorylated protein kinase B (pAKT) activation in vitro is not altered by the Lrp5A214V mutation. Although white adipose tissue depots are equally reduced in both compound and Akita mice, the Lrp5A214V mutation prevents brown adipose tissue whitening that occurs in Akita mice. Thus, hyperactivation of Lrp5-dependent signaling fully protects bone mass and strength in prolonged hyperglycemia and improves peripheral glucose metabolism in an insulin independent manner. Wnt signaling activation represents an ideal therapeutic approach for diabetic patients at high risk of fracture. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Diabetes Mellitus , Hyperglycemia , Animals , Bone Density/genetics , Gain of Function Mutation , Humans , Hyperglycemia/genetics , Insulin/genetics , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Male , Mice , Mutation/genetics
2.
JBMR Plus ; 4(11): e10413, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33210065

ABSTRACT

In endochondral ossification, chondroblasts become embedded in their matrix and become chondrocytes, which are mature cells that continue to proliferate, eventually becoming hypertrophic. Hypertrophic chondrocytes produce cartilage that is then resorbed by osteoclasts prior to bone matrix replacement via osteoblasts. Although sexually dimorphic bone phenotypes have long been characterized, specific modulation of the growth plate during a critical window in sexual maturation has not been evaluated. Here we report that specific depletion of osteocalcin- (OCN-) expressing cells in vivo during sexual maturation leads to dimorphic bone phenotypes in males and females. At 6 to 8 weeks of age, OCN-Cre;iDTR (inducible diphtheria toxin receptor-expressing) mice were treated with diphtheria toxin (DT) for 2 weeks to deplete OCN+ cells. At the end of the study, long bones were collected for µCT and histomorphometry, and serum was collected for proteomic and lipidomic analyses. Ablation of OCN+ cells in mice leads to consistent trends for weight loss after 2 weeks of treatment. Females exhibited decreased skeletal parameters in response to OCN+ cell ablation treatment, as expected. However, OCN+ cell ablation in males uniquely displayed an expansion of hypertrophic chondrocytes, a widening of the growth plate, and an abnormal "clubbing" anatomy of the distal femur. Following DT treatment, mice from both sexes also underwent metabolic cage analysis, in which both sexes exhibited decreased energy expenditure. We conclude that skewing endochondral bone formation during longitudinal growth has a profound effect on body weight and energy expenditure with sex-specific effects on developing bone. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

3.
Nat Commun ; 11(1): 3586, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32681075

ABSTRACT

Aberrant expression of receptor tyrosine kinase AXL is linked to metastasis. AXL can be activated by its ligand GAS6 or by other kinases, but the signaling pathways conferring its metastatic activity are unknown. Here, we define the AXL-regulated phosphoproteome in breast cancer cells. We reveal that AXL stimulates the phosphorylation of a network of focal adhesion (FA) proteins, culminating in faster FA disassembly. Mechanistically, AXL phosphorylates NEDD9, leading to its binding to CRKII which in turn associates with and orchestrates the phosphorylation of the pseudo-kinase PEAK1. We find that PEAK1 is in complex with the tyrosine kinase CSK to mediate the phosphorylation of PAXILLIN. Uncoupling of PEAK1 from AXL signaling decreases metastasis in vivo, but not tumor growth. Our results uncover a contribution of AXL signaling to FA dynamics, reveal a long sought-after mechanism underlying AXL metastatic activity, and identify PEAK1 as a therapeutic target in AXL positive tumors.


Subject(s)
Cell Movement , Focal Adhesions/metabolism , Neoplasms/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Focal Adhesions/genetics , Humans , Neoplasm Invasiveness , Neoplasms/genetics , Neoplasms/physiopathology , Paxillin/genetics , Paxillin/metabolism , Phosphorylation , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction , Axl Receptor Tyrosine Kinase
4.
Environ Sci Pollut Res Int ; 25(34): 33882-33894, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30022390

ABSTRACT

RECOTOX is a cross-cutting initiative promoting an integrated research to respond to the challenges of monitoring, understanding, and mitigating environmental and health impacts of pesticides in agroecosystems. The added value of RECOTOX is to develop a common culture around spatial ecotoxicology including the whole chain of pressure-exposure-impact, while strengthening an integrated network of in natura specifically equipped sites. In particular, it promotes transversal approaches at relevant socioecological system scales, to capitalize knowledge, expertise, and ongoing research in ecotoxicology and, to a lesser extent, environmental toxicology. Thus, it will open existing research infrastructures in environmental sciences to research programs in ecotoxicology of pesticides.


Subject(s)
Agriculture/methods , Ecotoxicology/methods , Pesticides/toxicity , Animals , Ecology , Environment , Environmental Monitoring/methods , Environmental Policy , Environmental Pollutants/toxicity , France , Humans , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...