Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(20): 206102, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829060

ABSTRACT

The liquid-to-solid phase transition is a complex process that is difficult to investigate experimentally with sufficient spatial and temporal resolution. A key aspect of the transition is the formation of a critical seed of the crystalline phase in a supercooled liquid, that is, a liquid in a metastable state below the melting temperature. This stochastic process is commonly described within the framework of classical nucleation theory, but accurate tests of the theory in atomic and molecular liquids are challenging. Here, we employ femtosecond x-ray diffraction from microscopic liquid jets to study crystal nucleation in supercooled liquids of the rare gases argon and krypton. Our results provide stringent limits to the validity of classical nucleation theory in atomic liquids, and offer the long-sought possibility of testing nonclassical extensions of the theory.

2.
Nat Mater ; 19(5): 512-516, 2020 May.
Article in English | MEDLINE | ID: mdl-32066929

ABSTRACT

Crystallization is a fundamental process in materials science, providing the primary route for the realization of a wide range of new materials. Crystallization rates are also considered to be useful probes of glass-forming ability1-3. At the microscopic level, crystallization is described by the classical crystal nucleation and growth theories4,5, yet in general solid formation is a far more complex process. In particular, the observation of apparently different crystal growth regimes in many binary liquid mixtures greatly challenges our understanding of crystallization1,6-12. Here, we study by experiments, theory and computer simulations the crystallization of supercooled mixtures of argon and krypton, showing that crystal growth rates in these systems can be reconciled with existing crystal growth models only by explicitly accounting for the non-ideality of the mixtures. Our results highlight the importance of thermodynamic aspects in describing the crystal growth kinetics, providing a substantial step towards a more sophisticated theory of crystal growth.

3.
Opt Lett ; 43(18): 4390-4393, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30211872

ABSTRACT

X-ray spectroscopy is a method, ideally suited for investigating the electronic structure of matter, which has been enabled by the rapid developments in light sources and instruments. The x-ray fluorescence lines of life-relevant elements such as carbon, nitrogen, and oxygen are located in the soft x-ray regime and call for suitable spectrometer devices. In this Letter, we present a high-resolution spectrum of liquid water, recorded with a soft x-ray spectrometer based on a reflection zone plate (RZP) design. The RZP-based spectrometer with meridional variation of line space density from 2953 to 3757 l/mm offers extremely high detection efficiency and, at the same time, medium energy resolution. We can reproduce the well-known splitting of liquid water in the lone pair regime with 10 s acquisition time.

5.
Phys Rev Lett ; 120(1): 015501, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29350942

ABSTRACT

The fast evaporative cooling of micrometer-sized water droplets in a vacuum offers the appealing possibility to investigate supercooled water-below the melting point but still a liquid-at temperatures far beyond the state of the art. However, it is challenging to obtain a reliable value of the droplet temperature under such extreme experimental conditions. Here, the observation of morphology-dependent resonances in the Raman scattering from a train of perfectly uniform water droplets allows us to measure the variation in droplet size resulting from evaporative mass losses with an absolute precision of better than 0.2%. This finding proves crucial to an unambiguous determination of the droplet temperature. In particular, we find that a fraction of water droplets with an initial diameter of 6379±12 nm remain liquid down to 230.6±0.6 K. Our results question temperature estimates reported recently for larger supercooled water droplets and provide valuable information on the hydrogen-bond network in liquid water in the hard-to-access deeply supercooled regime.

6.
Proc Natl Acad Sci U S A ; 113(51): 14651-14655, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27930299

ABSTRACT

Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this "tunneling region," the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2's binding energy of [Formula: see text] neV, which is in agreement with most recent calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...