Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 6(6): 1048-52, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-26262868

ABSTRACT

Metalated molecules are the ideal building blocks for the bottom-up fabrication of, e.g., two-dimensional arrays of magnetic particles for spintronics applications. Compared to chemical synthesis, metalation after network formation by an atom beam can yield a higher degree of control and flexibility and allows for mixing of different types of magnetic atoms. We report on successful metalation of tetrapyridyl-porphyrins (TPyP) by Co and Cr atoms, as demonstrated by scanning tunneling microscopy experiments. For the metalation, large periodic networks formed by the TPyP molecules on a Ag(111) substrate are exposed in situ to an atom beam. Voltage-induced dehydrogenation experiments support the conclusion that the porphyrin macrocycle of the TPyP molecule incorporates one transition metal atom. The newly synthesized Co-TPyP and Cr-TPyP complexes exhibit striking differences in their electronic behavior, leading to a magnetic character for Cr-TPyP only as evidenced by Kondo resonance measurements.

2.
Phys Rev Lett ; 112(2): 026102, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24484029

ABSTRACT

Single magnetic Co atoms are deposited on atomically thin NaCl films on Au(111). Two different adsorption sites are revealed by high-resolution scanning tunneling microscopy (STM), i.e., at Na and at Cl locations. Using density functional based simulations of the STM images, we show that the Co atoms substitute with either a Na or Cl atom of the NaCl surface, resulting in cationic and anionic Co dopants with a high thermal stability. The dependence of the magnetic coupling between neighboring Co atoms on their separation is investigated via spatially resolved measurement of the local density of states.

3.
Nanotechnology ; 23(43): 435605, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23059653

ABSTRACT

The formation of a novel surface reconstruction upon Co deposition on freshly cleaved Ge(111)2 × 1 surfaces is studied by means of scanning tunneling microscopy (STM) at 4.5 K. Previously we demonstrated that at this low substrate temperature the deposited Co atoms remain immobile after they become embedded underneath the Ge(111)2 × 1 surface. We now demonstrate that at higher substrate temperatures the embedded Co atoms are able to diffuse below the surface in a direction parallel to the upper π-bonded chain rows. This one-dimensional temperature-induced mobility results in subsurface accumulation of Co atoms at atomic steps, at domain boundaries and on atomically flat Ge terraces at, e.g., vacancies or adatoms, where reconstructed Co/Ge intermixing layers are formed. Voltage dependent STM images reveal that the Co related surface reconstruction locally exhibits an ordered atomic structure with the same inter-atomic distance as that of the initial 2 × 1 reconstructed pure Ge(111) surface. On the other hand, the presence of the Co results in a doubling of the periodicity along the [21[overline]1[overline]] direction in the STM images, which can be related to the modified electronic properties of the π-bonded chains.

4.
Phys Rev Lett ; 108(7): 076806, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22401240

ABSTRACT

We show that quantization of image-potential state (IS) electrons above the surface of nanostructures can be experimentally achieved by Ag nanocrystals that appear as stacking-fault tetrahedrons (SFTs) at Ag(111) surfaces. By means of cryogenic scanning tunneling spectroscopy, the n=1 IS of the Ag(111) surface is revealed to split up in discrete energy levels, which is accompanied by the formation of pronounced standing wave patterns that directly reflect the eigenstates of the SFT surface. The IS confinement behavior is compared to that of the surface state electrons in the SFT surface and can be directly linked to the particle-in-a-box model. ISs provide a novel playground for investigating quantum size effects and defect-induced scattering above nanostructured surfaces.

5.
Nanotechnology ; 21(48): 485401, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-21051804

ABSTRACT

Discrete image-potential states (ISs) are revealed at double-walled carbon nanotubes by means of scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) in the distance-voltage z(V) spectroscopy mode. The nanotubes are supported by flat Au(111) substrates. Due to the high sensitivity of the hot IS electrons to local variations of the surface potential, they can be considered as a sensitive probe to investigate interactions with the supporting substrate and impurities or defects at the nanotube surface. ISs provide information on the local electronic structure as well as on the electron dynamics at supported nanotubes.

6.
J Phys Condens Matter ; 22(25): 255504, 2010 Jun 30.
Article in English | MEDLINE | ID: mdl-21393803

ABSTRACT

Deposition of Co atoms on Au(111) surfaces leads to the formation of self-organized bilayer Co nanowires at the step edges between adjacent narrow Au(111) terraces. Scanning tunneling microscopy and spectroscopy at low temperatures is used to probe the influence of the finite dimensions on the local density of states for both the Co wires and the narrow Au terraces. Confinement of Au surface state electrons to narrow Au terraces causes a shift of the Au surface state onset energy to higher energies. For the Co nanowires discrete energy levels are observed. Moreover, standing wave patterns occur at the surface of both the Au and the Co. The patterns increase in complexity with increasing energy. All Co nanowires formed at the edges of narrow Au terraces reveal a characteristic maximum in the local density of states at a significantly different energy when compared to the Co islands that are formed on large Au terraces. The experimental results can be interpreted in terms of a simple particle-in-a-box model.

7.
J Nanosci Nanotechnol ; 9(8): 4700-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19928137

ABSTRACT

We report on the experimental observation by scanning tunneling microscopy at low temperature of ring-like features that appear around Co metal islands deposited on a clean (110) oriented surface of cleaved p-type InAs crystals. These features are visible in spectroscopic images within a certain range of negative tunneling bias voltages due to the presence of a negative differential conductance in the current-voltage dependence. A theoretical model is introduced, which takes into account non-equilibrium effects in the small tunneling junction area. In the framework of this model the appearance of the ring-like features is explained in terms of interference effects between electrons tunneling directly and indirectly (via a Co island) between the tip and the InAs surface.

8.
J Nanosci Nanotechnol ; 9(11): 6767-71, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19908597

ABSTRACT

We have investigated the morphologic and electronic properties of self-organized nanosized Cr islands grown on atomically flat Au(111) surfaces by means of low-temperature scanning tunneling microscopy and spectroscopy under ultra-high vacuum conditions. We observe the existence of an electronic surface state on the Cr islands, which manifests itself through the formation of standing wave patterns within the interior of the atomically flat islands that gain in complexity for increasing bias voltages. The patterns are only weakly observable when compared to similar standing waves formed within self-organized Co islands on Au(111). This difference is attributed to the more irregular shape of the Cr islands. Furthermore, we have found that the presence of the Cr surface state is reflected by the appearance of a distinct electronic state in the -200 mV to -150 mV range, resembling to previous findings for self-organized Co islands on Au(111).

9.
Nanotechnology ; 20(39): 395401, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19726839

ABSTRACT

By means of ion bombardment of clean Au(111) films, atomically flat nanoparticles of various shapes and sizes were created, ranging from several tens of nm(2) down to only a few nm(2). Both two-dimensional Au islands as well as one-dimensional Au nanowire-like structures have been investigated by means of low-temperature scanning tunneling microscopy and spectroscopy. We were able to probe their local electronic structure in a broad energy range, which was found to be dominated by pronounced size-dependent confinement effects. Mapping of the local density of states revealed complex standing wave patterns that arise due to interference of scattered Au surface state electrons at the edges of the Au nanoparticles. The observed phenomena could be modeled with high accuracy by theoretical particle-in-a-box calculations based on a variational method that can be applied to '2D boxes' of arbitrary polygonal shape and that we have previously successfully applied to explain the electronic wave patterns on Co islands on Au(111). Our findings support the general validity of this particle-in-a-box model.

10.
Phys Rev Lett ; 103(26): 266805, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-20366332

ABSTRACT

Discrete image-potential state (IS) resonances at Co nanoislands on Au(111) are probed using scanning tunneling microscopy and spectroscopy. We observe particle-in-box-type standing wave patterns, which is surprising in view of the high energy of the IS electrons when compared to the confining potential imposed by the island edges. The weak confining potential experienced by the IS electrons results in electronic interaction effects between closely spaced islands. Probing high-energy ISs hence provides a novel route to investigate electronic coupling between nanoislands on surfaces.

11.
J Nanosci Nanotechnol ; 8(7): 3616-20, 2008 Jul.
Article in English | MEDLINE | ID: mdl-19051919

ABSTRACT

Magnetic monolayer and bilayer Co islands of only a few nanometer in size were grown by atomic deposition on atomically flat Au(111) films. The islands were studied in situ by scanning tunneling microscopy (STM) and spectroscopy at low temperatures. Spin-resolved tunneling spectroscopy, using an STM tip with a magnetic coating, revealed that the Co islands exhibit a net magnetization perpendicular to the substrate surface due to the presence of spin-polarized d-states. A random distribution of islands with either upward or downward pointing magnetization was observed, without any specific correlation of magnetization orientation with island size or island height.


Subject(s)
Cobalt/chemistry , Gold/chemistry , Microscopy, Scanning Tunneling/methods , Nanotechnology/methods , Chromium/chemistry , Magnetics , Nanoparticles/chemistry , Nanostructures/chemistry , Spectrum Analysis/methods , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...