Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 7(2): 416-22, 2001 Jan 19.
Article in English | MEDLINE | ID: mdl-11271528

ABSTRACT

New cationic, square-planar, ethene complexes [(Rbpa)RhI(C2H4)]+ [2a]--[2c]+ (Rbpa = N-alkyl-N,N-di(2-pyridylmethyl)amine; [2a]+: alkyl =R=Me; [2b]+: R = Bu; [2c]+: R = Bz) have been selectively oxygenated in acetonitrile by aqueous hydrogen peroxide to 2-rhoda(III)oxetanes with a labile acetonitrile ligand, [(Rbpa)RhIII(kappa2-C,O-CH2CH2O-)(MeCN)]+, [3a]+-[3c]+. The rate of elimination of acetaldehyde from [(Rbpa)RhIII(kappa2-C,O-CH2CH2O-)(MeCN)]+ increases in the order R = Me< R = Bu< R = Bz. Elimination of acetaldehyde from [(Bzbpa)RhIII(kappa2-C,O-CH2CH2O)(MeCN)]+ [3c]+, in the presence of ethene results in regeneration of ethene complex [(Bzbpa)RhI(C2H4)]+ [2c]+, and closes a catalytic cycle. In the presence of Z,Z-1,5-cyclooctadiene (cod) the corresponding cod complex [(Bzbpa)RhI(cod)]+ [6c]+ is formed. Further oxidation of [3c]+ by H2O2 results in the transient formylmethyl-hydroxy complex [(Bzbpa)RhIII(OH)[kappa1-C-CH2C(O)H]]+ [5c]+.

2.
RNA ; 6(12): 1821-32, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11142381

ABSTRACT

The cleavage site of the Neurospora VS RNA ribozyme is located in a separate hairpin domain containing a hexanucleotide internal loop with an A-C mismatch and two adjacent G-A mismatches. The solution structure of the internal loop and helix la of the ribozyme substrate hairpin has been determined by nuclear magnetic resonance (NMR) spectroscopy. The 2 nt in the internal loop, flanking the cleavage site, a guanine and adenine, are involved in two sheared G.A base pairs similar to the magnesium ion-binding site of the hammerhead ribozyme. Adjacent to the tandem G.A base pairs, the adenine and cytidine, which are important for cleavage, form a noncanonical wobble A+-C base pair. The dynamic properties of the internal loop and details of the high-resolution structure support the view that the hairpin structure represents a ground state, which has to undergo a conformational change prior to cleavage. Results of chemical modification and mutagenesis data of the Neurospora VS RNA ribozyme can be explained in context with the present three-dimensional structure.


Subject(s)
Neurospora crassa/chemistry , Nucleic Acid Conformation , RNA, Catalytic/chemistry , RNA, Fungal/chemistry , RNA, Satellite/chemistry , Base Pairing , Base Sequence , Binding Sites , Hydrolysis , Magnesium/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Neurospora crassa/genetics , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...