Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 704: 135280, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31896211

ABSTRACT

In this case study, high sensitivity simple methods for the analysis of trihalomethanes (THM4), iodinated-trihalomethanes (I-THMs), haloacetic acids (HAAs), bromide, iodide and iodate have been developed. A one-step procedure for the analysis of haloacetic acids by head-space GC-MS provides good reproducibility and low limits of quantification (≤50 ng L-1). These methods were applied to characterize the formation of disinfection by-products (DBPs) in a full scale drinking water treatment plant. In this treatment plant, the incorporation of bromine into THMs increases throughout the water treatment line, due to the formation of bromine reactive species favored by the decrease of competition between dissolved organic carbon (DOC) and bromide towards chlorine. A linear correlation has been observed between the bromine incorporation factor and the Br-/DOC mass ratio. The conversion of iodine to iodate by chlorination occurs in this water due to the relatively high bromide concentration. Moreover, a higher formation of iodate compared to iodide levels in the raw water is observed indicating a degradation of organic iodinated compounds. The formation of I-THMs was constant in terms of quantity and speciation between campaigns despite fluctuating concentrations of DOC and total iodine in the raw water. A preferential removal of DBPs formed by the intermediate chlorination in the order I-DBPs > Br-DBPs > Cl-DBPs occurs during the subsequent activated carbon filtration. The removal rates range from 25 to 36% for the regulated THM4, from 82 to 93% for the ∑I-THMs and 95% for haloacetic acids. The assessment of the relative toxicity shows that despite a much lower concentration of HAAs (<10% of the total mass of measured DBPs) compared to THMs, these compounds are responsible for 75% of the relative cytotoxicity of the treated water. Bromoacetic acid on its own accounts for more than 60% of the overall toxicity of the 17 compounds included in this study.


Subject(s)
Water Purification , Disinfectants , Disinfection , Drinking Water , Halogenation , Reproducibility of Results , Trihalomethanes , Water Pollutants, Chemical
2.
Chemosphere ; 165: 191-201, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27654222

ABSTRACT

The combination of ozonation and activated carbon (AC) adsorption is an established technology for removal of trace organic contaminants (TrOCs). In contrast to oxidation, reduction of TrOCs has recently gained attention as well, however less attention has gone to the combination of reduction with AC adsorption. In addition, no literature has compared the removal behavior of reduction vs. ozonation by-products by AC. In this study, the effect of pre-ozonation vs pre-catalytic reduction on the AC adsorption efficiency of five TrOCs and their by-products was compared. All compounds were susceptible to oxidation and reduction, however the catalytic reductive treatment proved to be a slower reaction than ozonation. New oxidation products were identified for dinoseb and new reduction products were identified for carbamazepine, bromoxynil and dinoseb. In terms of compatibility with AC adsorption, the influence of the oxidative and reductive pretreatments proved to be compound dependent. Oxidation products of bromoxynil and diatrizoic acid adsorbed better than their parent TrOCs, but oxidation products of atrazine, carbamazepine and dinoseb showed a decreased adsorption. The reductive pre-treatment showed an enhanced AC adsorption for dinoseb and a major enhancement for diatrizoic acid. For atrazine and bromoxynil, no clear influence on adsorption was noted, while for carbamazepine, the reductive pretreatment resulted in a decreased AC affinity. It may thus be concluded that when targeting mixtures of TrOCs, a trade-off will undoubtedly have to be made towards overall reactivity and removal of the different constituents, since no single treatment proves to be superior to the other.


Subject(s)
2,4-Dinitrophenol/analogs & derivatives , Atrazine/metabolism , Carbamazepine/metabolism , Diatrizoate/metabolism , Environmental Restoration and Remediation/methods , Nitriles/metabolism , Water Pollutants, Chemical/metabolism , 2,4-Dinitrophenol/metabolism , Adsorption , Catalysis , Charcoal/chemistry , Oxidation-Reduction , Ozone/chemistry , Water Pollutants, Chemical/analysis
3.
Water Sci Technol ; 73(12): 2868-81, 2016.
Article in English | MEDLINE | ID: mdl-27332831

ABSTRACT

To evaluate the performance of zeolite-supported carbon-doped TiO(2) composite catalysts toward target pollutants under solar light irradiation, the adsorption and photocatalytic degradation of 18 pharmaceuticals and pesticides with distinguishing features (molecular size and volume, and photolysis) were investigated using mordenite zeolites with SiO(2)/Al(2)O(3) ratios of 18 and 240. Different quantities of carbon-doped TiO(2) were coated on the zeolites, and then the finished composite catalysts were tested in demineralized, surface, and hospital wastewater samples, respectively. The composite photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, and surface area and porosity analyses. Results showed that a dispersed layer of carbon-doped TiO(2) is formed on the zeolite surface; this layer blocks the micropores of zeolites and reduces their surface area. However, these reductions did not significantly affect adsorption onto the zeolites. Our results demonstrated that zeolite-supported carbon-doped TiO(2) systems can effectively degrade 18 pharmaceuticals and pesticides in demineralized water under natural and simulated solar light irradiation. In surface and hospital wastewaters, zeolite-supported carbon-doped TiO(2) systems present excellent anti-interference capability against radical scavengers and competitive organics for pollutants removal, and higher pollutants adsorption on zeolites evidently enhances the removal rate of target pollutants in surface and hospital wastewater samples with a complicated matrix.


Subject(s)
Pesticides/radiation effects , Pharmaceutical Preparations/radiation effects , Sunlight , Titanium/chemistry , Water Pollutants, Chemical/radiation effects , Zeolites/chemistry , Adsorption , Carbon/analysis , Photolysis
4.
Environ Sci Technol ; 49(1): 489-97, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25422872

ABSTRACT

Ion exchange membranes could provide a solution to the selective separation of organic and inorganic components in industrial wastewater. The phenomena governing the transport of organics through the IEM however, are not yet fully understood. Therefore, the transport of trace organic contaminants (TOrCs) as a model for a wide variety of organic compounds was studied under different conditions. It was found that in the absence of salt and external potential, the chemical equilibrium is the main driver for TOrC-transport, resulting in the transport of mainly charged TOrCs. When salt is present, the transport of TOrCs is hampered in favor of the NaCl transport, which shows a preferential interaction with the membranes due to its small size, high mobility and concentration. It is hypothesized that electrostatic interactions and electron donor/acceptor interactions are the main drivers for TOrC transport and that transport is mainly diffusion driven. This was confirmed in the experiments with different current densities, where the external potential seemed to have only a minor influence on the transport of TOrCs. It is only when the salt becomes nearly completely depleted that the TOrCs are transported as charge carriers. This shows that it is very difficult to get preferential transport of organic compounds due to the diffusive nature of their transport.


Subject(s)
Ion Exchange , Organic Chemicals/chemistry , Water Pollutants, Chemical/chemistry , Diffusion , Models, Theoretical , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...