Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 121(22): 12285-12293, 2017 Jun 08.
Article in English | MEDLINE | ID: mdl-28620448

ABSTRACT

Angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) was measured for one-monolayer coronene films deposited on Ag(111). The (kx ,ky )-dependent photoelectron momentum maps (PMMs), which were extracted from the ARUPS data by cuts at fixed binding energies, show finely structured patterns for the highest and the second-highest occupied molecular orbitals. While the substructure of the PMM main features is related to the 4 × 4 commensurate film structure, various features with three-fold symmetry imply an additional influence of the substrate. PMM simulations on the basis of both free-standing coronene assemblies and coronene monolayers on the Ag(111) substrate confirm a sizable molecule-molecule interaction because no substructure was observed for PMM simulations using free coronene molecules.

2.
Langmuir ; 31(42): 11748-53, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26465964

ABSTRACT

[Fe-Fe]-hydrogenase active site model complexes ([Fe(CO)3]2[(µ-SCH2)2C(CH2OH)2]) were immobilized on micropatterned n-octadecyltrichlorosilane (OTS) monolayers deposited on a Si substrate to form a microscale catalytic system. The micropatterns were generated by electro-oxidative lithography performed with a conductive TEM grid. The [Fe-Fe]-hydrogenase active-site complex molecules were selectively anchored in lithographic line areas with good coverage. Additionally, the biomimetic metal centers of the hydrogenase active-site complex molecules still maintained their catalytic activity and their redox-active properties after the immobilization process, which was proven by cyclic voltammetry.

3.
Phys Chem Chem Phys ; 17(20): 13323-32, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25921344

ABSTRACT

Carbon-polymer composites have great application potential in the field of organic batteries, capacitors, capacitive water desalination reactors and as the conductive platforms for electrochemical sensors. Although numerous studies have been carried out with respect to the synthesis, the optimization of composition, the carbon type and the morphology control, there is still a lack of understanding about which kind of intermolecular connection between carbon and polymer phases is preferential, and how the system should be designed to achieve the application demand of long-term electrochemical stability. Herein, we propose two model systems that employ the most well-known commercial carbons (SWCNTs and carbon black Vulcan XC72-R) to generate polypyrrole-C composites and validate the type of chemical bonding that is preferential to maintain electrochemical stability. In this work we used a simple oxidative polymerization of pyrrole and generated various formulations (with variable polymer content). Based on the surface XPS combined with bulk TGA-MS analysis we were able to evaluate the concentration and type of oxygen-containing functionalities, revealing a high oxygen content for the carbon black. It was further correlated with XPS analysis of the respective composites showed evidence of the electronic interaction called π-π* stacking between SWCNTs and PPy, and the binding energy shifts associated with the formation of hydrogen bridge bonds in the case of Vulcan XC-72R-PPy. Furthermore, the electrochemical stability of these model samples was investigated by AC impedance spectroscopy. The charge transfer resistance (Rct) was analyzed upon the oxidative potential, revealing SWCNT-PPy as an ultra-stable composite, even for the high polymer content (1 : 4 weight ratio of C-PPy). In contrast, the carbon black-PPy underwent rapid degradation in the whole composition range. The durability is associated with the type and strength of the polymer-carbon bonding as revealed by EIS impedance correlated with spectroscopic studies. The electronic interactions between SWCNTs and PPy result in superior stability while the carbon black-PPy, where the hydrogen bridge bonds are generated, is not stable under the same experimental conditions.

4.
J Mater Chem B ; 2(30): 4883-4893, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-32261780

ABSTRACT

The antifouling behavior of different poly(2-ethyl-2-oxazoline) (PEtOx) coatings was investigated under "real live" conditions. Amine end-functionalized PEtOx of different molar masses have been prepared using a new and straightforward, two step synthesis method. Subsequently, the PEtOx were attached to glass surfaces via a tetraether lipid and a common silane, respectively. The polymers and coatings were characterized using techniques such as 1H NMR spectroscopy and MALDI-TOF-MS as well as XPS and contact angle measurements. In a next step, the coatings were exposed to the simultaneous attack of five different bacteria in synthetic river water. A clear reduction of the biofilm formation was observed. In addition, the stability of the coatings against thermal, mechanical, and chemical stress was studied.

5.
Langmuir ; 27(19): 12008-15, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-21875110

ABSTRACT

The integration of nanoscale processes and devices demands fabrication routes involving rapid, cost-effective steps, preferably carried out under ambient conditions. The realization of the metal/organic semiconductor interface is one of the most demanding steps of device fabrication, since it requires mechanical and/or thermal treatments which increment costs and are often harmful in respect to the active layer. Here, we provide a microscopic analysis of a room temperature, electroless process aimed at the deposition of a nanostructured metallic silver layer with controlled coverage atop the surface of single crystals and thin films of organic semiconductors. This process relies on the reaction of aqueous AgF solutions with the nonwettable crystalline surface of donor-type organic semiconductors. It is observed that the formation of a uniform layer of silver nanoparticles can be accomplished within 20 min contact time. The electrical characterization of two-terminal devices performed before and after the aforementioned treatment shows that the metal deposition process is associated with a redox reaction causing the p-doping of the semiconductor.


Subject(s)
Metal Nanoparticles/chemistry , Silver/chemistry , Membranes, Artificial , Particle Size , Semiconductors , Surface Properties
6.
Ultramicroscopy ; 98(1): 1-7, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14609638

ABSTRACT

We have observed and simulated energy-dependent intensity distributions in electron channelling patterns (ECP) of cubic silicon carbide (3C SiC) which were recorded close to the (111) zone axis. The kinetic energies used were in the range from 4 to 8 keV, covering the low-energy region of the ECP technique. We explain the observed patterns by dynamical many beam simulations using a bloch wave approach for the diffraction of the incoming beam and the forward-backward-approximation for the backscattering of the electrons. The dynamical simulations reproduce the experimental patterns very well. It is found that higher-order Laue zone reflections are responsible for the strong energy sensitivity of the intensity distributions.

SELECTION OF CITATIONS
SEARCH DETAIL
...