Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 674438, 2021.
Article in English | MEDLINE | ID: mdl-34122490

ABSTRACT

A bimodal radial growth (RG) pattern, i.e., growth peaks in spring and autumn, was repeatedly found in trees in the Mediterranean regions, where summer drought causes reduction or cessation of cambial activity. In a dry inner Alpine valley of the Eastern Alps (Tyrol, Austria, 750 m asl), Pinus sylvestris shows unimodal RG with onset and cessation of cambial activity in early April and late June, respectively. A resumption of cambial activity after intense summer rainfall was not observed in this region. In a field experiment, we tested the hypothesis that early cessation of cambial activity at this drought-prone site is an adaptation to limited water availability leading to an early and irreversible switch of carbon (C) allocation to belowground. To accomplish this, the C status of young P. sylvestris trees was manipulated by physical blockage of phloem transport (girdling) 6 weeks after cessation of cambial cell division. Influence of manipulated C availability on RG was recorded by stem dendrometers, which were mounted above the girdling zone. In response to blockage of phloem flow, resumption of cambial activity was detected above girdling after about 2 weeks. Although the experimentally induced second growth surge lasted for the same period as in spring (c. 2 months), the increment was more than twice as large due to doubling of daily maximum RG rate. After girdling, wood anatomical traits above girdling no longer showed any significant differences between earlywood and latewood tracheids indicating pronounced effects of C availability on cell differentiation. Below girdling, no reactivation of cambial activity occurred, but cell wall thickness of last formed latewood cell was reduced due to lack of C supply after girdling. Intense RG resumption after girdling indicates that cessation of cambial activity can be reversed by manipulating C status of the stem. Hence, our girdling study yielded strong support for the hypothesis that belowground organs exert high C sink strengths on the drought-prone study site. Furthermore, this work highlights the need of in-depth experimental studies in order to understand the interactions between endogenous and exogenous factors on cambial activity and xylem cell differentiation more clearly.

2.
Plant Cell Environ ; 44(8): 2593-2603, 2021 08.
Article in English | MEDLINE | ID: mdl-33993527

ABSTRACT

The heat resistance of meristematic tissues is crucial for the survival of plants exposed to high temperatures, as experienced during a forest fire. Although the risk and frequency of forest fires are increasing due to climate change, knowledge about the heat susceptibility of buds, which enclose apical meristems and thus enable resprouting and apical growth, is scarce. In this study, the heat resistance of buds in two different phenological stages was experimentally assessed for 10 European tree species. Cellular heat tolerance of buds was analyzed by determining the electrolyte leakage following heat exposure. Further, the heat insulation capability was tested by measuring the time required to reach lethal internal temperatures linked to bud traits. Our results highlighted differences in cellular heat tolerance and insulation capability among the study species. The phenological stage was found to affect both the thermal stability of cells and the buds' insulation. Further, a good relationship between size-related bud traits and insulation capability was established. Species-specific data on the heat resistance of buds give a more accurate picture of the fire susceptibility of European tree species and provide useful information for estimating tree post-fire responses more precisely.


Subject(s)
Magnoliopsida/physiology , Thermotolerance/physiology , Trees/physiology , Electrolytes/metabolism , European Alpine Region , Hot Temperature , Magnoliopsida/cytology , Plant Cells , Trees/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...