Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(6): e202302979, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-37950854

ABSTRACT

Sustainability is one of the hot topics of today's research, in particular when it comes to energy-storage systems such as batteries. Redox-active molecules implemented in organic batteries represent a promising alternative to lithium-ion batteries, which partially rely on non-sustainable heavy metal salts. As an alternative, we propose benzothiazole, -oxazole and -imidazole derivatives as redox-active moieties for polymers in organic (radical) batteries. The target molecules were identified by a combination of theoretical and experimental approaches for the investigation of new organic active materials. Herein, we present the synthesis, electrochemical characterization and theoretical investigation of the proposed molecules, which can later be introduced into a polymer backbone and used in organic polymer batteries.

2.
ChemSusChem ; 16(14): e202300296, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37015042

ABSTRACT

The hydrophilic poly(2,2,6,6-tetramethylpiperdinyloxy-4-yl-methacrylamide) (PTMAm) was utilized as redox target material in an aqueous organic redox targeting flow battery (RTFB). This polymer is processed into granules, which contain a conductive agent and an alginate binder. By this, a hydrophilic, yet water-insoluble redox target can be obtained. The target was combined with the redox mediator molecule N,N,N-trimethyl-2-oxo-2-[(2,2,6,6-tetramethylpiperidin-4-yloxyl)amino]ethan-1-ammonium chloride (TEMPOAmide), that has been reported earlier as flow battery active material. This target/mediator combination has been characterized electrochemically and flow battery testing has been done. Furthermore, in-operando characterization of the redox target via electrolyte state-of-charge (SOC) monitoring has been performed for the first time. The approach provides estimates for the redox target's SOC changes during cycling. In addition, a figure of merit - the "redox targetivity" - is proposed, which provides insights into the efficiency of the targeting reaction and supports the future optimization of materials, cell designs, and operational parameters for RTFBs.

3.
ChemSusChem ; 15(18): e202200830, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35723221

ABSTRACT

Crosslinked hydrophilic poly(2,2,6,6-tetramethylpiperidinyl-N-oxyl-co-[2-(methacryloyloxy)-ethyl]trimethyl ammonium chloride) [poly(TEMPO-co-METAC)] polymers with different monomer ratios are synthesized and characterized regarding a utilization as electrode material in organic batteries. These polymers can be synthesized rapidly utilizing commercial starting materials and reveal an increased hydrophilicity compared to the state-of-the-art poly(2,2,6,6-tetramethylpiperidinyl-N-oxyl-4-methacrylate) (PTMA). By increasing the hydrophilicity of the polymer, a preparation of cathode composites is enabled, which can be used for aqueous semi-organic batteries. Detailed battery testing confirms that the additional METAC groups do not impair the battery behavior while enabling straight-forward zinc-TEMPO batteries.

4.
ACS Appl Mater Interfaces ; 14(5): 6638-6648, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35084188

ABSTRACT

The volumetric capacities and the lifetime of organic redox flow batteries (RFBs) are strongly dependent on the concentrations of the redox-active molecules in the electrolyte. Single-molecule redox targeting represents an efficient approach toward realizing viable organic RFBs with low to moderate electrolyte concentrations. For the first time, an all-organic Nernstian potential-driven redox targeting system is investigated that directly combines a single-electrode material from organic radical batteries (ORBs) with a single redox couple of an aqueous, organic RFB, which are based on the same redox moiety. Namely, poly(TEMPO-methacrylate) (PTMA) is utilized as the redox target ("solid booster") and N,N,N-2,2,6,6-heptamethylpiperidinyloxy-4-ammonium chloride (TMATEMPO) is applied as the sole redox mediator to demonstrate the redox targeting mechanisms between the storage materials of both battery types. The formal potentials of both molecules are investigated, and the targeting mechanism is verified by cyclic voltammetry and state-of-charge measurements. Finally, battery cycling experiments demonstrate that 78-90% of the theoretical capacity of the ORB electrode material can be addressed when this material is present as the redox target in the electrolyte tank of an operating, aqueous organic RFB.

5.
Molecules ; 24(24)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817289

ABSTRACT

A triol-functionalized 2,2'-bipyridine (bpy) derivative has been synthesized and used for the tris-alkoxylation of polyoxometalate (POM) precursors. The resultant POM-bpy conjugates of the Wells-Dawson- and Anderson-type feature a C-C bond as a linkage between the POM and bpy fragments. This structural motif is expected to increase the hydrolytic stability of the compounds. This is of particular relevance with respect to the application of POM-bpy metal complexes, as photocatalysts, in the hydrogen-evolution reaction (HER) in an aqueous environment. Accordingly, Rh(III) and Ir(III) complexes of the POM-bpy ligands have been prepared and characterized. These catalyst-photosensitizer dyads have been analyzed with respect to their electrochemical and photophysical properties. Cyclic and square-wave voltammetry, as well as UV/vis absorption and emission spectroscopy, indicated a negligible electronic interaction of the POM and metal-complex subunits in the ground state. However, emission-quenching experiments suggested an efficient intramolecular electron-transfer process from the photo-excited metal centers to the POM units to account for the non-emissive nature of the dyads (thus, suggesting a strong interaction of the subunits in the excited state). In-depth photophysical investigations, as well as a functional characterization, i.e., the applicability in the HER reaction, are currently ongoing.


Subject(s)
2,2'-Dipyridyl/pharmacology , Coordination Complexes/pharmacology , Photosensitizing Agents/pharmacology , Tungsten Compounds/pharmacology , Density Functional Theory , Electrochemistry , Molecular Conformation , Oxidation-Reduction , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Proton Magnetic Resonance Spectroscopy , Spectrophotometry, Ultraviolet , Tungsten Compounds/chemical synthesis , Tungsten Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...