Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 15(9): 2616-28, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23827019

ABSTRACT

Studies indicate that bacterial taxa utilize different fractions of the dissolved organic carbon (DOC) pool, while others suggest functional redundancy among constituents of bacterioplankton, implying only a weak coupling between community structure and function. We examined bacterial compositional and functional [ectoenzymatic activities and growth efficiency; bacterial growth efficiency (BGE)] responses to a gradient in bioavailable DOC (bDOC). This was achieved over 10 days in DOC utilization assays containing Baltic Sea water with variable amounts of natural bDOC. Measurements of bacterial growth, O2 and DOC consumption in the assays using non-invasive sampling showed that BGE changed over time and that the bDOC utilized accounted for 4-13% of the DOC pool. Pyrosequencing of 16S rRNA genes demonstrated minor differences at the phylum level between samples, whereas larger successional differences were discernible at lower phylogenetic levels. Our study suggests that changes in concentrations of bDOC affect bacterioplankton BGE and community structure by selecting for some taxa while the relative abundance of most taxa remained unaffected. Ectoenzymes activities suggested preferential degradation of protein-rich compounds by bacteria, switching to carbohydrate-rich DOC when proteins were depleted. Hence, there was a fairly weak linkage between bacterial community composition and DOC utilization suggesting that overall bacterioplankton community structure only to some extent has predictive power for processing of the DOC pool.


Subject(s)
Bacterial Physiological Phenomena , Biodiversity , Carbon/metabolism , Seawater/chemistry , Seawater/microbiology , Water Microbiology , Bacteria/enzymology , Bacteria/genetics , Bacteria/growth & development , Bacteria/metabolism , Carbon/chemistry , Oxygen/metabolism , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...