Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38832850

ABSTRACT

In this work, a concept for a neutron diffractometer for high-resolution macromolecular structures has been developed within the Jülich High Brilliance Neutron Source (HBS) project. The SELENE optics are adapted to the requirements of the instrument to achieve a tunable low background neutron beam at mm2 scale sample area. With the optimized guide geometry, a low background neutron beam can be achieved at the small sample area with tunable divergence and size. For the 1 × 1 mm2 sample, a flux of 1.10 × 107 n/s/cm2 for 0.38° divergence is calculated in the 2-4 Å wavelength range, which is about 84.6% of the flux at MaNDi of the high-power spallation source SNS at ORNL. Virtual neutron scattering experiments have been performed to demonstrate the instrument's capabilities for studies of mm scale samples with large unit cells. Results of Vitesse simulations indicate that unit cell sizes of up to 200 Å are possible to be resolved with the proposed instrument.

2.
Rev Sci Instrum ; 94(3): 034106, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012783

ABSTRACT

A new sample environment, called Bio-Oven, has been built for the Neutron Spin Echo (NSE) Spectrometer J-NSE Phoenix. It provides active temperature control and the possibility to perform Dynamic Light Scattering (DLS) measurements during the neutron measurement. DLS provides diffusion coefficients of the dissolved nanoparticles, and thus one can monitor the aggregation state of the sample on a time scale of minutes during the spin echo measurement times on the order of days. This approach helps to validate the NSE data or to replace the sample when its aggregation state influences the spin echo measurement results. The new Bio-Oven is an in situ DLS setup based on optical fibers decoupling the free space optics around the sample cuvette in a lightproof casing from the laser sources and the detectors. It collects light from three scattering angles simultaneously. Six different values of momentum transfer can be accessed by switching between two different laser colors. Test experiments were performed with silica nanoparticles with diameters ranging from 20 nm up to 300 nm. Their hydrodynamic radii were determined from DLS measurements and compared with the ones obtained by a commercial particle sizer. It was demonstrated that also the static light scattering signal can be processed and gives meaningful results. The protein sample apomyoglobin was used for a long-term test and in a first neutron measurement using the new Bio-Oven. The results prove that the aggregation state of the sample can be followed using in situ DLS along with the neutron measurement.

3.
Phys Rev Lett ; 98(24): 248301, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17677998

ABSTRACT

Femtosecond photoexcitation of organic chromophores in a molecular crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer as is evident from transient vibrational spectra. The structural response of the crystal to the dipole change is mapped directly for the first time by ultrafast x-ray diffraction or diffuse scattering. Changes of diffracted and transmitted x-ray intensity demonstrate an angular rearrangement of molecules around excited dipoles following the 10 ps kinetics of charge transfer and leaving lattice plane spacings unchanged. Transient x-ray scattering is governed by solvation, masking changes of the chromophore molecular structure.


Subject(s)
Crystallization , Models, Chemical , Solutions/chemistry , Models, Molecular , Nitriles/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...