Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Sci Rep ; 14(1): 10573, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719983

ABSTRACT

Multiple sclerosis (MS) is a chronic neurological disease characterized by inflammatory demyelination that disrupts neuronal transmission resulting in neurodegeneration progressive disability. While current treatments focus on immunosuppression to limit inflammation and further myelin loss, no approved therapies effectively promote remyelination to mitigate the progressive disability associated with chronic demyelination. Lysophosphatidic acid (LPA) is a pro-inflammatory lipid that is upregulated in MS patient plasma and cerebrospinal fluid (CSF). LPA activates the LPA1 receptor, resulting in elevated CNS cytokine and chemokine levels, infiltration of immune cells, and microglial/astrocyte activation. This results in a neuroinflammatory response leading to demyelination and suppressed remyelination. A medicinal chemistry effort identified PIPE-791, an oral, brain-penetrant, LPA1 antagonist. PIPE-791 was characterized in vitro and in vivo and was found to be a potent, selective LPA1 antagonist with slow receptor off-rate kinetics. In vitro, PIPE-791 induced OPC differentiation and promoted remyelination following a demyelinating insult. PIPE-791 further mitigated the macrophage-mediated inhibition of OPC differentiation and inhibited microglial and fibroblast activation. In vivo, the compound readily crossed the blood-brain barrier and blocked LPA1 in the CNS after oral dosing. Direct dosing of PIPE-791 in vivo increased oligodendrocyte number, and in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS, we observed that PIPE-791 promoted myelination, reduced neuroinflammation, and restored visual evoked potential latencies (VEP). These findings support targeting LPA1 for remyelination and encourage development of PIPE-791 for treating MS patients with advantages not seen with current immunosuppressive disease modifying therapies.


Subject(s)
Multiple Sclerosis , Receptors, Lysophosphatidic Acid , Remyelination , Animals , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Receptors, Lysophosphatidic Acid/metabolism , Remyelination/drug effects , Humans , Mice , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Oligodendroglia/metabolism , Oligodendroglia/drug effects , Brain/metabolism , Brain/drug effects , Brain/pathology , Cell Differentiation/drug effects , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Mice, Inbred C57BL , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Lysophospholipids/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects
2.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675584

ABSTRACT

To understand the biological relevance and mode of action of artificial protein ligands, crystal structures with their protein targets are essential. Here, we describe and investigate all known crystal structures that contain a so-called "molecular tweezer" or one of its derivatives with an attached natural ligand on the respective target protein. The aromatic ring system of these compounds is able to include lysine and arginine side chains, supported by one or two phosphate groups that are attached to the half-moon-shaped molecule. Due to their marked preference for basic amino acids and the fully reversible binding mode, molecular tweezers are able to counteract pathologic protein aggregation and are currently being developed as disease-modifying therapies against neurodegenerative diseases such as Alzheimer's and Parkinson's disease. We analyzed the corresponding crystal structures with 14-3-3 proteins in complex with mono- and diphosphate tweezers. Furthermore, we solved crystal structures of two different tweezer variants in complex with the enzyme Δ1-Pyrroline-5-carboxyl-dehydrogenase (P5CDH) and found that the tweezers are bound to a lysine and methionine side chain, respectively. The different binding modes and their implications for affinity and specificity are discussed, as well as the general problems in crystallizing protein complexes with artificial ligands.


Subject(s)
Protein Binding , Crystallography, X-Ray , Ligands , Humans , Models, Molecular , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/metabolism , Binding Sites , Proteins/chemistry , Protein Conformation
3.
Angew Chem Int Ed Engl ; 63(12): e202402244, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38372496

ABSTRACT

Günter Wulff, internationally well known for his invention of Molecular Imprinting, passed away on December 11, 2023 in Erkrath-Hochdahl, Germany, not far from the University of Düsseldorf, where he made his greatest discoveries. A passionate researcher and deep conceptual thinker, he greatly advanced our understanding of polymer chemistry.

4.
ACS Chem Neurosci ; 15(3): 685-698, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38265210

ABSTRACT

Structure-activity relationship studies led to the discovery of PIPE-3297, a fully efficacious and selective kappa opioid receptor (KOR) agonist. PIPE-3297, a potent activator of G-protein signaling (GTPγS EC50 = 1.1 nM, 91% Emax), did not elicit a ß-arrestin-2 recruitment functional response (Emax < 10%). Receptor occupancy experiments performed with the novel KOR radiotracer [3H]-PIPE-3113 revealed that subcutaneous (s.c.) administration of PIPE-3297 at 30 mg/kg in mice achieved 90% occupancy of the KOR in the CNS 1 h post dose. A single subcutaneous dose of PIPE-3297 in healthy mice produced a statistically significant increase of mature oligodendrocytes (P < 0.0001) in the KOR-enriched striatum, an effect that was not observed in animals predosed with the selective KOR antagonist norbinaltorphimine. An equivalent dose given to mice in an open-field activity-monitoring system revealed a small KOR-independent decrease in total locomotor activity versus vehicle measured between 60 and 75 min post dose. Daily doses of PIPE-3297 at both 3 and 30 mg/kg s.c. reduced the disease score in the mouse experimental autoimmune encephalomyelitis (EAE) model. Visually evoked potential (VEP) N1 latencies were also significantly improved versus vehicle in both dose groups, and latencies matched those of untreated animals. Taken together, these findings highlight the potential therapeutic value of functionally selective G-protein KOR agonists in demyelinating disease, which may avoid the sedating side effects typically associated with classical nonbiased KOR agonists.


Subject(s)
Receptors, Opioid, kappa , Signal Transduction , Mice , Animals , beta-Arrestin 2/pharmacology , Receptors, Opioid, kappa/agonists , GTP-Binding Proteins/metabolism , Narcotic Antagonists/pharmacology , Analgesics, Opioid/pharmacology
5.
J Am Soc Mass Spectrom ; 34(12): 2739-2747, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37936057

ABSTRACT

Parkinson's disease, a neurodegenerative disease that affects 15 million people worldwide, is characterized by deposition of α-synuclein into Lewy Bodies in brain neurons. Although this disease is prevalent worldwide, a therapy or cure has yet to be found. Several small compounds have been reported to disrupt fibril formation. Among these compounds is a molecular tweezer known as CLR01 that targets lysine and arginine residues. This study aims to characterize how CLR01 interacts with various proteoforms of α-synuclein and how the structure of α-synuclein is subsequently altered. Native mass spectrometry (nMS) measurements of α-synuclein/CLR01 complexes reveal that multiple CLR01 molecules can bind to α-synuclein proteoforms such as α-synuclein phosphorylated at Ser-129 and α-synuclein bound with copper and manganese ions. The binding of one CLR01 molecule shifts the ability for α-synuclein to bind other ligands. Electron capture dissociation (ECD) with Fourier transform-ion cyclotron resonance (FT-ICR) top-down (TD) mass spectrometry of α-synuclein/CLR01 complexes pinpoints the locations of the modifications on each proteoform and reveals that CLR01 binds to the N-terminal region of α-synuclein. CLR01 binding compacts the gas-phase structure of α-synuclein, as shown by ion mobility-mass spectrometry (IM-MS). These data suggest that when multiple CLR01 molecules bind, the N-terminus of α-synuclein shifts toward a more compact state. This compaction suggests a mechanism for CLR01 halting the formation of oligomers and fibrils involved in many neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , alpha-Synuclein/chemistry , Neurodegenerative Diseases/metabolism , Mass Spectrometry , Parkinson Disease/metabolism , Brain/metabolism
6.
Stud Health Technol Inform ; 307: 249-257, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37697860

ABSTRACT

INTRODUCTION: In industrialised countries, one in ten patients suffers harm during hospitalization. Critical Incident Reporting Systems (CIRS) aim to minimize this by learning from errors and identifying potential risks. However, a lack of interoperability among the 16 CIRS in Germany hampers their effectiveness. METHODS: This study investigates reports' syntactic and semantic interoperability across seven different reporting systems. Syntactic interoperability was examined using WHO's Minimal Information Models (MIM), while semantic interoperability was evaluated with SNOMED concepts. RESULTS: The findings reveal a low structural overlap, with only two terms correctly represented in the SNOMED CT terminology. In addition, most systems showed no syntactic interoperability. CONCLUSION: Improving interoperability is essential for increasing the effectiveness and usability of CIRS. The study suggests a unified data model such as MIM or using Health Level 7 Fast Healthcare Interoperability Resources (HL7 FHIR) resources and expanding SNOMED CT with patient safety-relevant terms for semantic interoperability. Given the current lack of both syntactic and semantic interoperability in CIRS, developing a patient safety ontology is recommended for efficient critical incident analysis too.


Subject(s)
Patient Safety , Risk Management , Humans , Germany , Health Level Seven , Hospitalization
7.
Chem Asian J ; 18(19): e202300637, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37616375

ABSTRACT

We present the design and synthesis of artificial specific nucleobases, each one recognizing a single base pair within the major groove of duplex DNA. Computational calculations indicate that PNAs modified with these nucleobases enable the formation of highly stable triple helices with no sequence restrictions through multiple hydrogen bonding and π⋅⋅⋅π stacking interactions, without significantly widening the DNA double helix. New synthetic routes were developed to the structures of these fused heterocycles which have rarely been described in the literature. NMR titration experiments indicate specific hydrogen bonding at the Hoogsteen sites. The new building blocks allow the construction of four PNA monomers for each canonic base pair and their covalent connection to PNA oligomers. These can be designed complementary to any given DNA sequence. With high efficiency and relative simplicity of operation, the described methodologies and strategies hence form the basis for a new supramolecular ligand system targeting double-stranded DNA without strand invasion.

8.
J Am Chem Soc ; 145(28): 15251-15264, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37392180

ABSTRACT

Binding of microtubule filaments by the conserved Ndc80 protein is required for kinetochore-microtubule attachments in cells and the successful distribution of the genetic material during cell division. The reversible inhibition of microtubule binding is an important aspect of the physiological error correction process. Small molecule inhibitors of protein-protein interactions involving Ndc80 are therefore highly desirable, both for mechanistic studies of chromosome segregation and also for their potential therapeutic value. Here, we report on a novel strategy to develop rationally designed inhibitors of the Ndc80 Calponin-homology domain using Supramolecular Chemistry. With a multiple-click approach, lysine-specific molecular tweezers were assembled to form covalently fused dimers to pentamers with a different overall size and preorganization/stiffness. We identified two dimers and a trimer as efficient Ndc80 CH-domain binders and have shown that they disrupt the interaction between Ndc80 and microtubules at low micromolar concentrations without affecting microtubule dynamics. NMR spectroscopy allowed us to identify the biologically important lysine residues 160 and 204 as preferred tweezer interaction sites. Enhanced sampling molecular dynamics simulations provided a rationale for the binding mode of multivalent tweezers and the role of pre-organization and secondary interactions in targeting multiple lysine residues across a protein surface.


Subject(s)
Lysine , Microtubule-Associated Proteins , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Lysine/metabolism , Kinetochores/metabolism , Nuclear Proteins/chemistry , Microtubules/metabolism
9.
Biomacromolecules ; 24(8): 3666-3679, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37507377

ABSTRACT

Survivin, a well-known member of the inhibitor of apoptosis protein family, is upregulated in many cancer cells, which is associated with resistance to chemotherapy. To circumvent this, inhibitors are currently being developed to interfere with the nuclear export of survivin by targeting its protein-protein interaction (PPI) with the export receptor CRM1. Here, we combine for the first time a supramolecular tweezer motif, sequence-defined macromolecular scaffolds, and ultrasmall Au nanoparticles (us-AuNPs) to tailor a high avidity inhibitor targeting the survivin-CRM1 interaction. A series of biophysical and biochemical experiments, including surface plasmon resonance measurements and their multivalent evaluation by EVILFIT, reveal that for divalent macromolecular constructs with increasing linker distance, the longest linkers show superior affinity, slower dissociation, as well as more efficient PPI inhibition. As a drawback, these macromolecular tweezer conjugates do not enter cells, a critical feature for potential applications. The problem is solved by immobilizing the tweezer conjugates onto us-AuNPs, which enables efficient transport into HeLa cells. On the nanoparticles, the tweezer valency rises from 2 to 16 and produces a 100-fold avidity increase. The hierarchical combination of different scaffolds and controlled multivalent presentation of supramolecular binders was the key to the development of highly efficient survivin-CRM1 competitors. This concept may also be useful for other PPIs.


Subject(s)
Gold , Metal Nanoparticles , Humans , Survivin , HeLa Cells , Inhibitor of Apoptosis Proteins/metabolism , Macromolecular Substances/metabolism , Active Transport, Cell Nucleus , Cell Nucleus/metabolism
10.
Chembiochem ; 24(7): e202200760, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36652672

ABSTRACT

The aggregation of amyloid-ß 42 (Aß42) is directly related to the pathogenesis of Alzheimer's disease. Here, we have investigated the early stages of the aggregation process, during which most of the cytotoxic species are formed. Aß42 aggregation kinetics, characterized by the quantification of Aß42 monomer consumption, were tracked by real-time solution NMR spectroscopy (RT-NMR) allowing the impact that low-molecular-weight (LMW) inhibitors and modulators exert on the aggregation process to be analysed. Distinct differences in the Aß42 kinetic profiles were apparent and were further investigated kinetically and structurally by using thioflavin T (ThT) and transmission electron microscopy (TEM), respectively. LMW inhibitors were shown to have a differential impact on early-state aggregation. Insight provided here could direct future therapeutic design based on kinetic profiling of the process of fibril formation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Kinetics , Amyloid beta-Peptides/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Peptide Fragments/chemistry
11.
Pharmacol Rev ; 75(2): 263-308, 2023 03.
Article in English | MEDLINE | ID: mdl-36549866

ABSTRACT

Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.


Subject(s)
Biological Products , COVID-19 , Animals , Organophosphates/pharmacology , SARS-CoV-2 , Amyloidogenic Proteins , Mammals
12.
Biomacromolecules ; 23(11): 4504-4518, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36200481

ABSTRACT

Many natural proteins contain flexible loops utilizing well-defined complementary surface regions of their interacting partners and usually undergo major structural rearrangements to allow perfect binding. The molecular recognition of such flexible structures is still highly challenging due to the inherent conformational dynamics. Notably, protein-protein interactions are on the other hand characterized by a multivalent display of complementary binding partners to enhance molecular affinity and specificity. Imitating this natural concept, we here report the rational design of advanced multivalent supramolecular tweezers that allow addressing two lysine and arginine clusters on a flexible protein surface loop. The protease Taspase 1, which is involved in cancer development, carries a basic bipartite nuclear localization signal (NLS) and thus interacts with Importin α, a prerequisite for proteolytic activation. Newly established synthesis routes enabled us to covalently fuse several tweezer molecules into multivalent NLS ligands. The resulting bi- up to pentavalent constructs were then systematically compared in comprehensive biochemical assays. In this series, the stepwise increase in valency was robustly reflected by the ligands' gradually enhanced potency to disrupt the interaction of Taspase 1 with Importin α, correlated with both higher binding affinity and inhibition of proteolytic activity.


Subject(s)
Cell Nucleus , alpha Karyopherins , alpha Karyopherins/chemistry , alpha Karyopherins/metabolism , Amino Acid Sequence , Ligands , Protein Binding , Cell Nucleus/metabolism , Nuclear Localization Signals/metabolism , Proteins/metabolism , Peptide Hydrolases/metabolism
14.
JACS Au ; 2(9): 2187-2202, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36186568

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 presents a global health emergency. Therapeutic options against SARS-CoV-2 are still very limited but urgently required. Molecular tweezers are supramolecular agents that destabilize the envelope of viruses resulting in a loss of viral infectivity. Here, we show that first-generation tweezers, CLR01 and CLR05, disrupt the SARS-CoV-2 envelope and abrogate viral infectivity. To increase the antiviral activity, a series of 34 advanced molecular tweezers were synthesized by insertion of aliphatic or aromatic ester groups on the phosphate moieties of the parent molecule CLR01. A structure-activity relationship study enabled the identification of tweezers with a markedly enhanced ability to destroy lipid bilayers and to suppress SARS-CoV-2 infection. Selected tweezer derivatives retain activity in airway mucus and inactivate the SARS-CoV-2 wildtype and variants of concern as well as respiratory syncytial, influenza, and measles viruses. Moreover, inhibitory activity of advanced tweezers against respiratory syncytial virus and SARS-CoV-2 was confirmed in mice. Thus, potentiated tweezers are broad-spectrum antiviral agents with great prospects for clinical development to combat highly pathogenic viruses.

16.
Z Evid Fortbild Qual Gesundhwes ; 169: 1-11, 2022 Apr.
Article in German | MEDLINE | ID: mdl-35184999

ABSTRACT

BACKGROUND: CIRSmedical.de is a publicly accessible, cross-institutional reporting and learning system, which is organized by the German Agency for Quality in Medicine (ÄZQ). CIRSmedical.de has existed since 2005 and has published more than 6,000 event reports. Up to now it has been common practice to analyse these reports in detail or carry out systematic evaluations focusing on specific topics. A systematic evaluation of all case reports has not yet been conducted. Natural Language Processing (NLP) is an analysis strategy from the field of Artificial Intelligence for indexing texts. The examination of case reports using NLP was carried out to describe the characteristics of event reports and comments. MATERIALS AND METHODS: For this analysis 6,480 case reports from CIRSmedical.de (as of December 10, 2019) were provided by the ÄZQ as Excel files. Several free text fields were included in the analysis as well as the feedback of the CIRS team (expert commentary). Text lengths, reporting behaviour, sentiment values and keywords were examined. The algorithms for the analysis were developed with the programming language Python and the corresponding libraries NLTK and SpaCy. RESULTS: The comparison of report lengths depending on the different subject groups presented a heterogeneous picture, in terms of both the number of reports and the number of words. There are more than 4,000 reports from the field of anaesthesiology, whereby text lengths vary particularly strongly with a right-skewed distribution. There are only a few reports from the field of psychotherapy, and these are also very short. The different professional groups (nurses, doctors, other staff) write reports of about the same length. Reports and expert commentaries also differ in terms of sentiment values. Due to the length of the comments, they are more negative in terms of sentiment. Keywords can be identified but show a high heterogeneity. DISCUSSION: Systematic analysis using NLP allows for the description of text properties in event reports and comments. It is now possible to draw a conclusion about the reporters' intention, focus and mood when they report in CIRS. The sentiment analysis is an indication of the mood which the texts convey, both as a report and as a commentary. Text length analysis draws attention to different problems and tendencies: event reports are usually much shorter. Texts that are too short, however, run the risk that the information will not be readily usable for analysis. Comments are often longer, but here one faces the opposite problem: texts that are too long may not be read. The examination of texts by means of NLP helps to rethink the reason for and the form of input, both when reporting and when commenting. It is a first step in the automatic, supportive classification of texts and an improvement of the interaction between reporters and the system.


Subject(s)
Artificial Intelligence , Natural Language Processing , Attitude , Germany , Humans , Language
17.
Chem Commun (Camb) ; 58(18): 2954-2966, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35170594

ABSTRACT

A new supramolecular approach to broad spectrum antivirals utilizes host guest chemistry between molecular tweezers and lysine/arginine as well as choline. Basic amino acids in amyloid-forming SEVI peptides (semen-derived enhancers of viral infection) are included inside the tweezer cavity leading to disaggregation and neutralization of the fibrils, which lose their ability to enhance HIV-1/HIV-2 infection. Lipid head groups contain the trimethylammonium cation of choline; this is likewise bound by molecular tweezers, which dock onto viral membranes and thus greatly enhance their surface tension. Disruption of the envelope in turn leads to total loss of infectiosity (ZIKA, Ebola, Influenza). This complexation event also seems to be the structural basis for an effective inihibition of cell-to-cell spread in Herpes viruses. The article describes the discovery of novel molecular recognition motifs and the development of powerful antiviral agents based on these host guest systems. It explains the general underlying mechanisms of antiviral action and points to future optimization and application as therapeutic agents.


Subject(s)
Antiviral Agents/chemistry , Bridged-Ring Compounds/pharmacology , Organophosphates/pharmacology , Viral Envelope/drug effects , Viruses/drug effects , Amyloidosis/prevention & control , Antiviral Agents/pharmacology , Humans , Viruses/pathogenicity
18.
Chembiochem ; 23(2): e202100502, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34758178

ABSTRACT

Methylated free amino acids are an important class of targets for host-guest chemistry that have recognition properties distinct from those of methylated peptides and proteins. We present comparative binding studies for three different host classes that are each studied with multiple methylated arginines and lysines to determine fundamental structure-function relationships. The hosts studied are all anionic and include three calixarenes, two acyclic cucurbiturils, and two other cleft-like hosts, a clip and a tweezer. We determined the binding association constants for a panel of methylated amino acids using indicator displacement assays. The acyclic cucurbiturils display stronger binding to the methylated amino acids, and some unique patterns of selectivity. The two other cleft-like hosts follow two different trends, shallow host (clip) following similar trends to the calixarenes, and the other more closed host (tweezer) binding certain less-methylated amino acids stronger than their methylated counterparts. Molecular modelling sheds some light on the different preferences of the various hosts. The results identify hosts with new selectivities and with affinities in a range that could be useful for biomedical applications. The overall selectivity patterns are explained by a common framework that considers the geometry, depth of binding pockets, and functional group participation across all host classes.


Subject(s)
Amino Acids/metabolism , Arginine/metabolism , Lysine/metabolism , Methylation , Protein Binding
19.
Beilstein J Org Chem ; 17: 2795-2798, 2021.
Article in English | MEDLINE | ID: mdl-34925618
20.
Viruses ; 13(9)2021 08 25.
Article in English | MEDLINE | ID: mdl-34578265

ABSTRACT

Human cytomegalovirus (HCMV) uses two major ways for virus dissemination: infection by cell-free virus and direct cell-to-cell spread. Neutralizing antibodies can efficiently inhibit infection by cell-free virus but mostly fail to prevent cell-to-cell transmission. Here, we show that the 'molecular tweezer' CLR01, a broad-spectrum antiviral agent, is not only highly active against infection with cell-free virus but most remarkably inhibits antibody-resistant direct cell-to-cell spread of HCMV. The inhibition of cell-to-cell spread by CLR01 was not limited to HCMV but was also shown for the alphaherpesviruses herpes simplex viruses 1 and 2 (HSV-1, -2). CLR01 is a rapid acting small molecule that inhibits HCMV entry at the attachment and penetration steps. Electron microscopy of extracellular virus particles indicated damage of the viral envelope by CLR01, which likely impairs the infectivity of virus particles. The rapid inactivation of viral particles by CLR01, the viral envelope as the main target, and the inhibition of virus entry at different stages are presumably the key to inhibition of cell-free virus infection and cell-to-cell spread by CLR01. Importance: While cell-free spread enables the human cytomegalovirus (HCMV) and other herpesviruses to transmit between hosts, direct cell-to-cell spread is thought to be more relevant for in vivo dissemination within infected tissues. Cell-to-cell spread is resistant to neutralizing antibodies, thus contributing to the maintenance of virus infection and virus dissemination in the presence of an intact immune system. Therefore, it would be therapeutically interesting to target this mode of spread in order to treat severe HCMV infections and to prevent dissemination of virus within the infected host. The molecular tweezer CLR01 exhibits broad-spectrum antiviral activity against a number of enveloped viruses and efficiently blocks antibody-resistant cell-to-cell spread of HCMV, thus representing a novel class of small molecules with promising antiviral activity.


Subject(s)
Antibodies, Neutralizing/immunology , Bridged-Ring Compounds/pharmacology , Cell Communication/drug effects , Cytomegalovirus/drug effects , Organophosphates/pharmacology , Virus Internalization/drug effects , Virus Replication/drug effects , Cell Communication/immunology , Cell Line , Cytomegalovirus/immunology , Fibroblasts/drug effects , Fibroblasts/virology , Foreskin/cytology , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...