Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(6): 112599, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37279110

ABSTRACT

Therapeutic neoantigen cancer vaccines have limited clinical efficacy to date. Here, we identify a heterologous prime-boost vaccination strategy using a self-assembling peptide nanoparticle TLR-7/8 agonist (SNP) vaccine prime and a chimp adenovirus (ChAdOx1) vaccine boost that elicits potent CD8 T cells and tumor regression. ChAdOx1 administered intravenously (i.v.) had 4-fold higher antigen-specific CD8 T cell responses than mice boosted by the intramuscular (i.m.) route. In the therapeutic MC38 tumor model, i.v. heterologous prime-boost vaccination enhances regression compared with ChAdOx1 alone. Remarkably, i.v. boosting with a ChAdOx1 vector encoding an irrelevant antigen also mediates tumor regression, which is dependent on type I IFN signaling. Single-cell RNA sequencing of the tumor myeloid compartment shows that i.v. ChAdOx1 reduces the frequency of immunosuppressive Chil3 monocytes and activates cross-presenting type 1 conventional dendritic cells (cDC1s). The dual effect of i.v. ChAdOx1 vaccination enhancing CD8 T cells and modulating the TME represents a translatable paradigm for enhancing anti-tumor immunity in humans.


Subject(s)
CD8-Positive T-Lymphocytes , Vaccination , Humans , Mice , Animals , Adaptive Immunity , Genetic Vectors , Adjuvants, Immunologic
2.
PLoS One ; 16(7): e0255096, 2021.
Article in English | MEDLINE | ID: mdl-34310620

ABSTRACT

The COVID-19 pandemic raises the need for diverse diagnostic approaches to rapidly detect different stages of viral infection. The flexible and quantitative nature of single-molecule imaging technology renders it optimal for development of new diagnostic tools. Here we present a proof-of-concept for a single-molecule based, enzyme-free assay for detection of SARS-CoV-2. The unified platform we developed allows direct detection of the viral genetic material from patients' samples, as well as their immune response consisting of IgG and IgM antibodies. Thus, it establishes a platform for diagnostics of COVID-19, which could also be adjusted to diagnose additional pathogens.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Single Molecule Imaging/methods , Viral Proteins/genetics , Antibodies, Viral/blood , Base Sequence , COVID-19/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , COVID-19 Serological Testing/standards , Enzyme-Linked Immunosorbent Assay , Humans , Immune Sera/chemistry , Immunoglobulin G/blood , Immunoglobulin M/blood , Nasopharynx/virology , Polyproteins/blood , Polyproteins/genetics , RNA, Viral/blood , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Single Molecule Imaging/instrumentation , Viral Proteins/blood
3.
medRxiv ; 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34075385

ABSTRACT

The COVID-19 pandemic raises the need for diverse diagnostic approaches to rapidly detect different stages of viral infection. The flexible and quantitative nature of single-molecule imaging technology renders it optimal for development of new diagnostic tools. Here we present a proof-of-concept for a single-molecule based, enzyme-free assay for detection of SARS-CoV-2. The unified platform we developed allows direct detection of the viral genetic material from patients' samples, as well as their immune response consisting of IgG and IgM antibodies. Thus, it establishes a platform for diagnostics of COVID-19, which could also be adjusted to diagnose additional pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...