Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 83(Pt 4): 783-793, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11907327

ABSTRACT

Recently, homomultimerization and heteromultimerization reactions of the poliovirus P2 region proteins were investigated using a yeast two-hybrid approach (Cuconati et al., Journal of Virology 72, 1297-1307, 1998). In this study, we investigated multimerization reactions of the 2B, 2C and 2BC proteins of the closely related coxsackie B3 virus (CBV3) using a mammalian two-hybrid system. This system allows the characterization of protein:protein interactions within a cellular environment that more closely mimics the native protein environment. Homomultimerization reactions were observed with the 2BC protein and, albeit weakly, with the 2B protein, but not with the 2C protein. To identify the determinants involved in the 2BC and 2B homomultimerization reactions, several mutants containing deletions or point mutations in the 2B region were tested. Disruption of the hydrophobic character of either the cationic amphipathic alpha-helix or the second hydrophobic domain of the 2B protein disturbed both the 2BC:2BC and the 2B:2B homomultimerization reactions. Disruption of either the cationic or the amphipathic character of the alpha-helix or deletion of the N-terminal 30 amino acids of the 2B protein, however, had no effect on the 2BC and 2B homomultimerization reactions. Heteromultimerization reactions were observed between proteins 2BC and 2B, and also between proteins 2BC and 2C, but not between the 2B and 2C proteins. The 2BC:2B and 2BC:2C heteromultimerization reactions were also mediated by hydrophobic determinants located in the amphipathic alpha-helix and the second hydrophobic domain. The nature of the interactions and their implications for the virus life-cycle are discussed.


Subject(s)
Carrier Proteins/chemistry , Enterovirus/chemistry , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Animals , COS Cells , Enterovirus/physiology , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Mutation , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Two-Hybrid System Techniques
2.
J Gen Virol ; 83(Pt 2): 341-350, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11807227

ABSTRACT

The enterovirus 2B protein contains a putative amphipathic alpha-helix that includes three positively charged and one negatively charged residue. Previously, we observed that replacement of the glutamic acid-40 residue with a lysine residue (mutation 2B-E[40]K) in the amphipathic alpha-helix of the coxsackie B3 virus 2B protein resulted in a quasi-infectious phenotype. On one occasion, however, transfection of 2B-E[40]K RNA transcripts gave rise to a virus stock in which the mutation was retained. This study was aimed at elucidating the molecular mechanism underlying this observation. Sequence analysis of the viral RNA provided no evidence for a second-site suppression mutation that rescued the defect of the 2B-E[40]K mutation in cis. Therefore, the possibility was considered that the defect caused by the 2B-E[40]K mutation was complemented in trans by viable revertants that had emerged in the virus population. The transfection-derived virus stock indeed contained a small fraction of (pseudo)revertant viruses, carrying the original glutamic acid-40, threonine-40 or asparagine-40, rather than the introduced lysine-40. Consistent with the idea that the 2B-E[40]K virus is unable to grow without the aid of trans-acting wild-type(-like) proteins, only the (pseudo)revertant viruses were able to produce individual plaques. Further support for the idea of trans-rescue was obtained using a genetic complementation assay, which revealed the occurrence of a low level of trans-complementation of the 2B-E[40]K mutation by wild-type virus. This is the first report that provides evidence that a genetic defect in the enterovirus 2B protein can be complemented in trans.


Subject(s)
Enterovirus B, Human/genetics , Enterovirus B, Human/physiology , Genetic Complementation Test , Viral Proteins/genetics , Animals , Cell Line , Enterovirus Infections/virology , Humans , Mutation , RNA, Viral/genetics , RNA, Viral/metabolism , Sequence Analysis, DNA , Transfection , Viral Plaque Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...