Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 271(14): 8028-33, 1996 Apr 05.
Article in English | MEDLINE | ID: mdl-8626485

ABSTRACT

Site-directed mutagenesis of a domain (amino acids 299-338) aligning to the I-helix region of P450cam, P450BM3 and P450terp was used to investigate the different regioselectivities displayed in the hydroxylation reactions performed by human aldosterone synthase (P450aldo) and 11beta-hydroxylase (P45011beta). The two enzymes are 93% identical and are essential for the synthesis of mineralocorticoids and glucocorticoids in the human adrenal gland. Single replacement of P450aldo residues for P45011 beta-specific residues at positions 296, 301, 302, 320, and 335 only gave rise to slightly increased 11beta-hydroxylase activities. However, a L301P/A320V double substitution increased 11beta-hydroxylase activity to 60% as compared with that of P45011 beta. Additionally substituting Ala-320 for Val-320 of P45011 beta further enhanced this activity to 85%. The aldosterone synthase activities of the mutant P450aldo proteins were suppressed to a varying degree, with triple replacement mutant L301P/E302D/A320V retaining only 10% and double replacement mutant L301P/A320V retaining only 13% of the P450aldo wild type activity. These results demonstrate a switch in regio- and stereoselectivities of the engineered P450aldo enzyme due to manipulation of residues at three critical positions, and we attribute the determination of these features in P450aldo to the structure of a region analogous to the I-helix in P450cam.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Steroid 11-beta-Hydroxylase/chemistry , Amino Acid Sequence , Base Sequence , Cytochrome P-450 CYP11B2 , DNA Primers/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Engineering , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins , Sequence Alignment , Sequence Homology, Amino Acid , Structure-Activity Relationship
2.
Eur J Biochem ; 231(1): 226-35, 1995 Jul 01.
Article in English | MEDLINE | ID: mdl-7628475

ABSTRACT

Of the aromatic 1H-NMR signals of oxidized bovine adrenodoxin only those of His56 showed intrinsic chemical shift changes upon replacement of Tyr82 by Ser or Leu, that must arise from a loss of a through-space ring-current effect of the tyrosine ring in these mutants. Thus, of the three His residues contained in adrenodoxin, His56 is closest to Tyr82, and hence to the highly acidic determinant region of adrenodoxin that is the interaction site for adrenodoxin reductase and P-450. The strong dependence of the fluorescence intensity of Tyr82 on the residue in position 56 supported this observation. As a consequence of this, the effects of replacement of His56 by Gln or Thr on cytochrome c reduction and cytochromes P-450(11 beta) (CYP11B1)-dependent and P-450scc (CYP11A1)-dependent substrate conversions were studied. No influence on Vmax values was observed for all reactions mediated by the mutants, implying His56 does not play a decisive role in the intramolecular or intermolecular electron transfer. In contrast, the Km values were increased, as was the Ks value for binding of CYP11A1 to the [H56T]adrenodoxin. The secondary structure deduced from further NMR data of adrenodoxin was compared with that of other ferredoxins. Tyr82 is in a region of the molecule containing no secondary-structure elements. The data for Tyr82 are in keeping with the biological activities and suggests it is in a flexible, solvent-exposed region of the molecule.


Subject(s)
Adrenodoxin/chemistry , Mutation , Adrenodoxin/genetics , Amides , Amino Acid Sequence , Animals , Cattle , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Oxidation-Reduction , Protein Structure, Secondary , Sequence Homology, Amino Acid , Spectrometry, Fluorescence
3.
J Mol Biol ; 230(2): 592-612, 1993 Mar 20.
Article in English | MEDLINE | ID: mdl-8464066

ABSTRACT

Originally, rotamers were defined as side-chain torsion (chi-angle) combinations corresponding to the local minima of potential energy (van-der-Waals and torsion terms) for the side-chain of a terminally blocked amino acid. If at least one chi-angle differed by more than 20 degrees from that of a rotamer, the side-chain was considered as deviant both from energetic (increase in potential energy of no less than 1 to 2 kcal/mol) and geometric (precision of atom positioning is worse than 0.5 A) aspects. In this work the distribution of side-chain conformations in protein crystal structures is analysed. Large deviations from rotameric chi-values occur systematically and cannot be attributed merely to errors in crystal structure determination. The "rotamericity" (the fraction of residues within +/- 20 degrees of the chi-angles of a rotamer) not only remains substantially below 100% (70 to 95% for various amino acids) with improving crystallographic resolution but actually decreases for 8 out of 17 amino acid types after a critical resolution limit is crossed. This effect has been observed for external as well as for internal residues. The set of amino acid side-chain conformations in globular proteins cannot be considered as normally distributed around some rotamer points. Outliers occur systematically. The rotamericity of an amino acid depends essentially on the different environments the amino acid meets in real protein structures. Factors such as the backbone torsion angles of the residue itself, the secondary structure and tertiary contacts influence the rotamericity. The deviations in regions of regular main-chain structure from the average g-:t:g+ relationship in the chi 1-angle become much more evident if, in addition to the typical secondary structure assignments, the actual backbone torsion angles of the residue are taken into account. In alpha-helices the t:g+ distribution in the chi 1-angle correlates with physical properties describing volume, extension and flexibility of the side-chain. In beta-strands the factors influencing the t:g+ distribution in the chi 1-angle are the polarity and hydrophobicity of the side-chain. Nevertheless, a considerable number of residues do not comply with the statistical preferences observed for the side-chain conformation. Large deviations from the rotamer values are observed especially in cases when normally advantageous chi 1-values are not allowed and adjustments in chi 2 become necessary to accommodate the side-chain.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Amino Acids/chemistry , Protein Conformation , Proteins/chemistry , Animals , Calorimetry , Crystallography/methods , Enzymes/chemistry , Humans , Mathematics
SELECTION OF CITATIONS
SEARCH DETAIL
...