Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Nat Commun ; 12(1): 4773, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362885

ABSTRACT

The relationship between the age-associated decline in mitochondrial function and its effect on skeletal muscle physiology and function remain unclear. In the current study, we examined to what extent physical activity contributes to the decline in mitochondrial function and muscle health during aging and compared mitochondrial function in young and older adults, with similar habitual physical activity levels. We also studied exercise-trained older adults and physically impaired older adults. Aging was associated with a decline in mitochondrial capacity, exercise capacity and efficiency, gait stability, muscle function, and insulin sensitivity, even when maintaining an adequate daily physical activity level. Our data also suggest that a further increase in physical activity level, achieved through regular exercise training, can largely negate the effects of aging. Finally, mitochondrial capacity correlated with exercise efficiency and insulin sensitivity. Together, our data support a link between mitochondrial function and age-associated deterioration of skeletal muscle.


Subject(s)
Aging/physiology , Energy Metabolism/physiology , Exercise/psychology , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Humans , Insulin Resistance , Male , Middle Aged , Young Adult
2.
J Nutr ; 151(10): 2917-2931, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34191033

ABSTRACT

BACKGROUND: Boosting NAD+ via supplementation with niacin equivalents has been proposed as a potential modality capable of promoting healthy aging and negating age-dependent declines of skeletal muscle mass and function. OBJECTIVES: We investigated the efficacy of NAD+-precursor supplementation (tryptophan, nicotinic acid, and nicotinamide) on skeletal muscle mitochondrial function in physically compromised older adults. METHODS: A randomized, double-blind, controlled trial was conducted in 14 (female/male: 4/10) community-dwelling, older adults with impaired physical function [age, 72.9 ± 4.0 years; BMI, 25.2 ± 2.3 kg/m2]. Participants were supplemented with 207.5 mg niacin equivalents/day [intervention (INT)] and a control product (CON) that did not contain niacin equivalents, each for 32 days. The primary outcomes tested were mitochondrial oxidative capacity and exercise efficiency, analyzed by means of paired Student's t-tests. Secondary outcomes, such as NAD+ concentrations, were analyzed accordingly. RESULTS: Following supplementation, skeletal muscle NAD+ concentrations [7.5 ± 1.9 compared with 7.9 ± 1.6 AU, respectively] in INT compared with CON conditions were not significantly different compared to the control condition, whereas skeletal muscle methyl-nicotinamide levels were significantly higher under NAD+-precursor supplementation [INT, 0.098 ± 0.063 compared with CON, 0.025 ± 0.014; P = 0.001], suggesting an increased NAD+ metabolism. Conversely, neither ADP-stimulated [INT, 82.1 ± 19.0 compared with CON, 84.0 ± 19.2; P = 0.716] nor maximally uncoupled mitochondrial respiration [INT, 103.4 ± 30.7 compared with CON, 108.7 ± 33.4; P = 0.495] improved under NAD+-precursor supplementation, nor did net exercise efficiency during the submaximal cycling test [INT, 20.2 ± 2.77 compared with CON, 20.8 ± 2.88; P = 0.342]. CONCLUSIONS: Our findings are consistent with previous findings on NAD+ efficacy in humans, and we show in community-dwelling, older adults with impaired physical function that NAD+-precursor supplementation through L-tryptophan, nicotinic acid, and nicotinamide does not improve mitochondrial or skeletal muscle function. This study was registered at clinicaltrials.gov as NCT03310034.


Subject(s)
Niacin , Aged , Dietary Supplements , Female , Humans , Male , Mitochondria , Muscle, Skeletal/metabolism , NAD/metabolism , Niacin/pharmacology , Niacinamide/pharmacology , Tryptophan/metabolism
3.
J Intern Med ; 284(5): 505-518, 2018 11.
Article in English | MEDLINE | ID: mdl-29331050

ABSTRACT

The incidence of obesity and metabolic disease, such as type 2 diabetes mellitus (T2D), is rising globally. Dietary lipid over supply leads to lipid accumulation at ectopic sites, such as skeletal muscle. Ectopic lipid storage is highly correlated with insulin resistance and T2D, likely due to a loss of metabolic flexibility - the capacity to switch between fat and glucose oxidation upon insulin stimulation - and cellular dysfunction because of lipotoxicity. However, muscle lipid levels are also elevated in endurance-trained athletes, presenting a paradoxical phenotype of increased intramuscular lipids along with high insulin sensitivity - the 'athletes' paradox'. This review focuses on recent human data to characterize intramuscular lipid species in order to elucidate some of the underlying mechanisms driving skeletal muscle lipotoxicity. There is evidence that lipotoxicity is characterized by an increase in bioactive lipid species, such as ceramide. The athletes' paradox supports the notion that regular physical exercise has health benefits that might originate from the alleviation of lipotoxicity. Indeed, exercise training alleviates intramuscular ceramide content in obese individuals without a necessary decrease in ectopic lipid storage. Furthermore, evidence shows that exercise training elevates markers of lipid droplet dynamics such as the PLIN proteins, and triglyceride lipases ATGL and HSL, as well as mitochondrial efficiency, potentially explaining the improved lipid turnover and a reduction in the accumulation of lipotoxic intermediates observed with the athelets' paradox.


Subject(s)
Exercise/physiology , Lipid Droplets/physiology , Lipid Metabolism , Athletes , Humans , Lipid Droplets/metabolism , Lipid Metabolism/physiology
4.
Scand J Med Sci Sports ; 25 Suppl 4: 126-34, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26589126

ABSTRACT

During evolution, mitochondrial DNA haplogroups of arctic populations may have been selected for lower coupling of mitochondrial respiration to ATP production in favor of higher heat production. We show that mitochondrial coupling in skeletal muscle of traditional and westernized Inuit habituating northern Greenland is identical to Danes of western Europe haplogroups. Biochemical coupling efficiency was preserved across variations in diet, muscle fiber type, and uncoupling protein-3 content. Mitochondrial phenotype displayed plasticity in relation to lifestyle and environment. Untrained Inuit and Danes had identical capacities to oxidize fat substrate in arm muscle, which increased in Danes during the 42 days of acclimation to exercise, approaching the higher level of the Inuit hunters. A common pattern emerges of mitochondrial acclimatization and evolutionary adaptation in humans at high latitude and high altitude where economy of locomotion may be optimized by preservation of biochemical coupling efficiency at modest mitochondrial density, when submaximum performance is uncoupled from VO2max and maximum capacities of oxidative phosphorylation.


Subject(s)
Deltoid Muscle/metabolism , Inuit , Mitochondria, Muscle/metabolism , Oxidative Phosphorylation , Quadriceps Muscle/metabolism , White People , Adenosine Triphosphate/biosynthesis , Adult , Cell Respiration , Cold Temperature , DNA, Mitochondrial , Deltoid Muscle/cytology , Denmark/ethnology , Fatty Acids/metabolism , Female , Greenland/ethnology , Haplotypes , Humans , Inuit/genetics , Ion Channels/metabolism , Male , Mitochondrial Proteins/metabolism , Oxidation-Reduction , Oxygen Consumption , Quadriceps Muscle/cytology , Seasons , Skiing/physiology , Thermogenesis , Uncoupling Protein 3 , White People/genetics
5.
Int J Obes (Lond) ; 39(12): 1696-702, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26189600

ABSTRACT

BACKGROUND/OBJECTIVES: It has now been unequivocally demonstrated that humans possess functional brown adipose tissue (BAT) and that human BAT can be recruited upon chronic cold stimulation. Recruitment of BAT has been postulated as a potential strategy to counteract the current global obesity epidemic. Recently, it was shown in rodents that endurance exercise training could stimulate the recruitment of brown-like adipocytes within white adipose tissue (WAT) via exercise-induced myokines such as irisin (the cleaved circulating product of the type 1 membrane protein FNDC5) and interleukin-6 (IL-6). Our objective was to test whether endurance-trained athletes had increased cold-stimulated BAT activity and browning of subcutaneous WAT compared with lean sedentary males. SUBJECTS/METHODS: Twelve endurance-trained athletes and 12 lean sedentary males were measured during 2 h of mild cold exposure to determine cold-induced BAT activity via [(18)F]fluorodeoxyglucose-positron emission tomography-computed tomography ([(18)F]FDG-PET-CT) scanning. Skeletal muscle FNDC5 expression, as well as plasma irisin and IL-6 levels were determined. In addition, a subcutaneous abdominal WAT biopsy was taken to measure gene expression of several markers for browning of WAT. RESULTS: Cold-induced BAT activity was significantly lower in athletes, and no differences in gene expression of classical brown and beige adipocyte markers were detected in subcutaneous WAT between the groups. As expected, mRNA expression of FNDC5 in skeletal muscle was significantly higher in endurance athletes but plasma irisin and Il-6 levels were similar in both groups. CONCLUSIONS: These results indicate that chronic endurance exercise is not associated with brown and beige adipocyte recruitment; in fact endurance training appears to be linked to lower the metabolic activity of BAT in humans.


Subject(s)
Adipose Tissue, Brown/metabolism , Muscle, Skeletal/metabolism , Physical Endurance , Positron-Emission Tomography , Sedentary Behavior , Adipose Tissue, Brown/diagnostic imaging , Adult , Athletes , Biomarkers/metabolism , Cold Temperature , Fibronectins/blood , Fluorodeoxyglucose F18/metabolism , Gene Expression Regulation , Humans , Interleukin-6/blood , Male , Muscle, Skeletal/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals , Thermogenesis , Thinness , Tomography, X-Ray Computed
6.
Sci Rep ; 5: 9709, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25866366

ABSTRACT

Elevated hepatic lipid content (IntraHepatic Lipid, IHL) increases the risk of metabolic complications. Although prolonged exercise training lowers IHL, it is unknown if acute exercise has the same effect. Furthermore, hepatic ATP content may be related to insulin resistance and IHL. We aimed to investigate if acute exercise leads to changes in IHL and whether this is accompanied by changes in hepatic ATP. Twenty-one men (age 54.8 ± 7.2 years, BMI 29.7 ± 2.2 kg/m(2)) performed a 2 h cycling protocol, once while staying fasted and once while ingesting glucose. IHL was determined at baseline, 30 min post-exercise and 4 h post-exercise. Additionally ATP/Total P ratio was measured at baseline and 4 h post-exercise. Compared with baseline values we did not observe any statistically significant changes in IHL within 30 min post-exercise in neither the fasted nor the glucose-supplemented condition. However, IHL was elevated 4 h post-exercise compared with baseline in the fasted condition (from 8.3 ± 1.8 to 8.7 ± 1.8%, p = 0.010), an effect that was blunted by glucose supplementation (from 8.3 ± 1.9 to 8.3 ± 1.9%, p = 0.789). Acute exercise does not decrease liver fat in overweight middle-aged men. Moreover, IHL increased 4 h post-exercise in the fasted condition, an increase that was absent in the glucose-supplemented condition. These data suggest that a single bout of exercise may not be able to lower IHL.


Subject(s)
Exercise , Fats/metabolism , Liver/metabolism , Liver/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Overweight/metabolism , Adenosine Triphosphate/metabolism , Aged , Energy Metabolism , Humans , Lipid Metabolism , Lipids/blood , Male , Middle Aged , Oxidation-Reduction , Risk Factors
7.
Int J Obes (Lond) ; 38(3): 470-3, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23958793

ABSTRACT

Polyphenolic compounds, such as resveratrol, have recently received widespread interest because of their ability to mimic effects of calorie restriction. The objective of the present study was to gain more insight into the effects of 30 days resveratrol supplementation on adipose tissue morphology and underlying processes. Eleven healthy obese men were supplemented with placebo and resveratrol for 30 days (150 mg per day), separated by a 4-week washout period in a double-blind randomized crossover design. A postprandial abdominal subcutaneous adipose tissue biopsy was collected to assess adipose tissue morphology and gene expression using microarray analysis. Resveratrol significantly decreased adipocyte size, with a shift toward a reduction in the proportion of large and very-large adipocytes and an increase in small adipocytes. Microarray analysis revealed downregulation of Wnt and Notch signaling pathways and upregulation of pathways involved in cell cycle regulation after resveratrol supplementation, suggesting enhanced adipogenesis. Furthermore, lysosomal/phagosomal pathway and transcription factor EB were upregulated reflecting an alternative pathway of lipid breakdown by autophagy. Further research is necessary to investigate whether resveratrol improves adipose tissue function.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue/metabolism , Enzyme Inhibitors/therapeutic use , Obesity/drug therapy , Stilbenes/therapeutic use , Adipogenesis/drug effects , Adipose Tissue/drug effects , Adult , Aged , Cross-Over Studies , Double-Blind Method , Gene Expression Profiling , Humans , Male , Middle Aged , Obesity/genetics , Obesity/metabolism , Receptors, Notch/drug effects , Receptors, Notch/metabolism , Resveratrol , Signal Transduction/drug effects , Treatment Outcome , Wnt Signaling Pathway/drug effects
8.
Diabet Med ; 30(10): 1214-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23663119

ABSTRACT

AIMS: Resveratrol, a natural polyphenolic compound produced by various plants (e.g. red grapes) and found in red wine, has glucose-lowering effects in humans and rodent models of obesity and/or diabetes. The mechanisms behind these effects have been suggested to include resveratrol-induced secretion of the gut incretin hormone glucagon-like peptide-1. We investigated postprandial incretin hormone and glucagon responses in obese human subjects before and after 30 days of resveratrol supplementation. METHODS: Postprandial plasma responses of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide and glucagon were evaluated in 10 obese men [subjects characteristics (mean ± standard error of the mean): age 52 ± 2 years; BMI 32 ± 1 kg/m(2), fasting plasma glucose 5.5 ± 0.1 mmol/l] who had been given a dietary supplement of resveratrol (Resvida(®) 150 mg/day) or placebo for 30 days in a randomized, double-blind, crossover design with a 4-week washout period. At the end of each intervention period a standardized meal test (without co-administration of resveratrol) was performed. RESULTS: Resveratrol supplementation had no impact on fasting plasma concentrations or postprandial plasma responses (area under curve values) of glucose-dependent insulinotropic polypeptide (11.2 ± 2.1 vs. 11.8 ± 2.2 pmol/l, P = 0.87; 17.0 ± 2.2 vs. 14.8 ± 1.6 min × nmol/l, P = 0.20) or glucagon-like peptide-1 (15.4 ± 1.0 vs. 15.2 ± 0.9 pmol/l, P = 0.84; 5.6 ± 0.4 vs. 5.7 ± 0.3 min × nmol/l, P = 0.73). Resveratrol supplementation significantly suppressed postprandial glucagon responses (4.4 ± 0.4 vs. 3.9 ± 0.4 min × nmol/l, P = 0.01) without affecting fasting glucagon levels (15.2 ± 2.2 vs. 14.5 ± 1.5 pmol/l, P = 0.56). CONCLUSIONS: Our data suggest that 30 days of resveratrol supplementation does not affect fasting or postprandial incretin hormone plasma levels in obese humans, but suppresses postprandial glucagon responses.


Subject(s)
Antioxidants/therapeutic use , Blood Glucose/drug effects , Glucagon/drug effects , Obesity/blood , Stilbenes/therapeutic use , Blood Glucose/metabolism , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Fasting , Gastric Inhibitory Polypeptide/blood , Gastric Inhibitory Polypeptide/drug effects , Glucagon/blood , Glucagon-Like Peptide 1/blood , Glucagon-Like Peptide 1/drug effects , Humans , Incretins/blood , Male , Middle Aged , Obesity/complications , Obesity/drug therapy , Postprandial Period , Resveratrol , Time Factors , Treatment Outcome
9.
Biochim Biophys Acta ; 1831(4): 844-52, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23353597

ABSTRACT

AIMS/HYPOTHESIS: While lipid deposition in the skeletal muscle is considered to be involved in obesity-associated insulin resistance, neutral intramyocellular lipid (IMCL) accumulation per se does not necessarily induce insulin resistance. We previously demonstrated that overexpression of the lipid droplet coat protein perilipin 2 augments intramyocellular lipid content while improving insulin sensitivity. Another member of the perilipin family, perilipin 5 (PLIN5), is predominantly expressed in oxidative tissues like the skeletal muscle. Here we investigated the effects of PLIN5 overexpression - in comparison with the effects of PLIN2 - on skeletal muscle lipid levels, gene expression profiles and insulin sensitivity. METHODS: Gene electroporation was used to overexpress PLIN5 in tibialis anterior muscle of rats fed a high fat diet. Eight days after electroporation, insulin-mediated glucose uptake in the skeletal muscle was measured by means of a hyperinsulinemic euglycemic clamp. Electron microscopy, fluorescence microscopy and lipid extractions were performed to investigate IMCL accumulation. Gene expression profiles were obtained using microarrays. RESULTS: TAG storage and lipid droplet size increased upon PLIN5 overexpression. Despite the higher IMCL content, insulin sensitivity was not impaired and DAG and acylcarnitine levels were unaffected. In contrast to the effects of PLIN2 overexpression, microarray data analysis revealed a gene expression profile favoring FA oxidation and improved mitochondrial function. CONCLUSIONS/INTERPRETATION: Both PLIN2 and PLIN5 increase neutral IMCL content without impeding insulin-mediated glucose uptake. As opposed to the effects of PLIN2 overexpression, overexpression of PLIN5 in the skeletal muscle promoted expression of a cluster of genes under control of PPARα and PGC1α involved in FA catabolism and mitochondrial oxidation.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Animals , Insulin/metabolism , Insulin Resistance/genetics , Insulin Resistance/physiology , Intracellular Signaling Peptides and Proteins/genetics , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscle Proteins/genetics , Perilipin-2 , Perilipin-5 , Rats , Rats, Wistar , Triglycerides/metabolism
10.
Horm Metab Res ; 45(5): 378-82, 2013 May.
Article in English | MEDLINE | ID: mdl-23235922

ABSTRACT

Obesity and insulin resistance are associated with low-grade systemic inflammation, which is related to increased concentrations of plasma FFAs, glucose, or insulin. Prolonged fasting induces insulin resistance due to elevated plasma FFAs, but is not accompanied by hyperinsulinemia or hyperglycemia. This makes it possible to study effects of physiologically increased FFA concentrations on inflammatory markers, when insulin and glucose concentrations are not increased. In random order, 10 healthy young lean men (mean BMI: 22.8 kg/m2) were fasted or fed in energy balance for 60 h with a 2-week wash-out period. Subjects stayed in a respiration chamber during the 60-h periods. Blood samples were taken after 12, 36, and 60 h. Then, a hyperinsulinemic-euglycemic clamp was performed.Fasting decreased insulin sensitivity by 45% and increased FFA concentrations 5-fold. Fasting did not change concentrations of the inflammatory cytokines TNF-α, IL-1ß, IL-6 and IL-8, or of hs-CRP. Effects on vascular endothelial growth factor (VEGF)--which may positively relate to insulin resistance, and on chemerin and leptin--adipokines related to obesity, and obesity-related pathologies, were also studied. At t=60 h, VEGF concentrations were significantly increased during the fasted period (p<0.05). At the same time point, chemerin (p<0.01) and leptin (p<0.01) were significantly decreased after fasting. For leptin, this decrease was also significant after 36 h (p<0.01). Adiponectin levels remained unchanged. In healthy young lean men, fasting-induced increases in FFAs leading to insulin resistance do not cause changes in concentrations of the inflammatory cytokines. VEGF concentrations increased and those of chemerin decreased.


Subject(s)
Adipokines/blood , Fasting/blood , Health , Inflammation/blood , Thinness/blood , Adiponectin/blood , Biomarkers/blood , Chemokines/blood , Humans , Intercellular Signaling Peptides and Proteins , Leptin/blood , Male , Vascular Endothelial Growth Factor A/blood , Young Adult
11.
Diabetologia ; 55(10): 2759-2768, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22782287

ABSTRACT

AIMS/HYPOTHESIS: High-fat, high-sucrose diet (HF)-induced reactive oxygen species (ROS) levels are implicated in skeletal muscle insulin resistance and mitochondrial dysfunction. Here we investigated whether mitochondrial ROS sequestering can circumvent HF-induced oxidative stress; we also determined the impact of any reduced oxidative stress on muscle insulin sensitivity and mitochondrial function. METHODS: The Skulachev ion (plastoquinonyl decyltriphenylphosphonium) (SkQ), a mitochondria-specific antioxidant, was used to target ROS production in C2C12 muscle cells as well as in HF-fed (16 weeks old) male C57Bl/6 mice, compared with mice on low-fat chow diet (LF) or HF alone. Oxidative stress was measured as protein carbonylation levels. Glucose tolerance tests, glucose uptake assays and insulin-stimulated signalling were determined to assess muscle insulin sensitivity. Mitochondrial function was determined by high-resolution respirometry. RESULTS: SkQ treatment reduced oxidative stress in muscle cells (-23% p < 0.05), but did not improve insulin sensitivity and glucose uptake under insulin-resistant conditions. In HF mice, oxidative stress was elevated (56% vs LF p < 0.05), an effect completely blunted by SkQ. However, HF and HF+SkQ mice displayed impaired glucose tolerance (AUC HF up 33%, p < 0.001; HF+SkQ up 22%; p < 0.01 vs LF) and disrupted skeletal muscle insulin signalling. ROS sequestering did not improve mitochondrial function. CONCLUSIONS/INTERPRETATION: SkQ treatment reduced muscle mitochondrial ROS production and prevented HF-induced oxidative stress. Nonetheless, whole-body glucose tolerance, insulin-stimulated glucose uptake, muscle insulin signalling and mitochondrial function were not improved. These results suggest that HF-induced oxidative stress is not a prerequisite for the development of muscle insulin resistance.


Subject(s)
Dietary Fats/pharmacology , Insulin Resistance/physiology , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Plastoquinone/analogs & derivatives , Reactive Oxygen Species/metabolism , Animals , Free Radical Scavengers/pharmacology , Glucose/metabolism , In Vitro Techniques , Insulin/metabolism , Lipids/blood , Male , Mice , Mice, Inbred C57BL , Models, Animal , Muscle, Skeletal/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Plastoquinone/pharmacology
12.
J Clin Endocrinol Metab ; 97(7): E1229-33, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22535970

ABSTRACT

CONTEXT: Stimulation of thermogenesis in brown adipose tissue (BAT) is a potential target to treat obesity. We earlier demonstrated that BAT activity is relatively low in obese subjects. It is unknown whether BAT can be recruited in adult humans. OBJECTIVE: To study the dynamics of BAT, we observed BAT activity in morbidly obese subjects before and after weight loss induced by bariatric surgery. DESIGN: This was an observational prospective cohort study. SETTING: The study was conducted at a referral center. PATIENTS: Ten morbidly obese subjects eligible for laparoscopic adjustable gastric banding surgery were studied before and 1 yr after bariatric surgery. MAIN OUTCOME MEASURE: The main outcome measure was BAT activity, as determined after acute cold stimulation using (18)F-fluorodeoxyglucose positron emission tomography and computed tomography. RESULTS: Before surgery, only two of 10 subjects showed active BAT. One year after surgery, the number of subjects with active BAT was increased to five. After weight loss, BAT-positive subjects had significantly higher nonshivering thermogenesis compared with BAT-negative subjects (P < 0.05). CONCLUSIONS: The results show that in humans BAT can be recruited in the regions in which it was also reported in lean subjects before. These results for the first time show recruitment of BAT in humans and may open the door for BAT-targeted treatments of obesity.


Subject(s)
Adipose Tissue, Brown/metabolism , Obesity, Morbid/surgery , Weight Loss/physiology , Adipose Tissue, Brown/physiology , Adult , Bariatric Surgery/rehabilitation , Cohort Studies , Female , Fluorodeoxyglucose F18/pharmacokinetics , Follow-Up Studies , Humans , Male , Middle Aged , Obesity, Morbid/metabolism , Obesity, Morbid/physiopathology , Positron-Emission Tomography/methods , Thermogenesis/physiology , Up-Regulation
13.
Am J Physiol Endocrinol Metab ; 303(1): E71-81, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22496349

ABSTRACT

Adipose triglyceride lipase (ATGL) is a lipolytic enzyme that is highly specific for triglyceride hydrolysis. The ATGL-knockout mouse (ATGL(-/-)) accumulates lipid droplets in various tissues, including skeletal muscle, and has poor maximal running velocity and endurance capacity. In this study, we tested whether abnormal lipid accumulation in skeletal muscle impairs mitochondrial oxidative phosphorylation, and hence, explains the poor muscle performance of ATGL(-/-) mice. In vivo ¹H magnetic resonance spectroscopy of the tibialis anterior of ATGL(-/-) mice revealed that its intramyocellular lipid pool is approximately sixfold higher than in WT controls (P = 0.0007). In skeletal muscle of ATGL(-/-) mice, glycogen content was decreased by 30% (P < 0.05). In vivo ³¹P magnetic resonance spectra of resting muscles showed that WT and ATGL(-/-) mice have a similar energy status: [PCr], [P(i)], PCr/ATP ratio, PCr/P(i) ratio, and intracellular pH. Electrostimulated muscles from WT and ATGL(-/-) mice showed the same PCr depletion and pH reduction. Moreover, the monoexponential fitting of the PCr recovery curve yielded similar PCr recovery times (τPCr; 54.1 ± 6.1 s for the ATGL(-/-) and 58.1 ± 5.8 s for the WT), which means that overall muscular mitochondrial oxidative capacity was comparable between the genotypes. Despite similar in vivo mitochondrial oxidative capacities, the electrostimulated muscles from ATGL(-/-) mice displayed significantly lower force production and increased muscle relaxation time than the WT. These findings suggest that mechanisms other than mitochondrial dysfunction cause the impaired muscle performance of ATGL(-/-) mice.


Subject(s)
Lipase/metabolism , Lipid Metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxidative Phosphorylation , Animals , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/ultrastructure , Electric Stimulation , Electrodes, Implanted , Hindlimb , Hydrogen-Ion Concentration , Kinetics , Lipase/genetics , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Mitochondria, Muscle/ultrastructure , Muscle Contraction , Muscle Relaxation , Muscle Tonus , Muscle, Skeletal/ultrastructure
14.
Nutr Diabetes ; 1: e11, 2011 Jul 11.
Article in English | MEDLINE | ID: mdl-23449423

ABSTRACT

OBJECTIVE: In conditions of continuous high-fat (HF) intake, the degree of saturation of the fatty acids (FAs) in the diet might have a crucial role in the onset of obesity and its metabolic complications. In particular, the FA composition of the diet might influence the storage form of lipids inside skeletal muscle. The aim of the present study was to examine whether the FA composition of HF diets differentially affects weight gain and accumulation of myocellular triacylglycerol (TAG) and diacylglycerol (DAG). Furthermore, we examined whether the FA composition of the diet was reflected in the composition of the myocellular lipid intermediates. DESIGN: C57Bl6 mice were fed HF diets (45% energy) mainly containing palm oil (PO), cocoa butter (CB), olive oil (OO) or safflower oil (SO; n=6 per group) for 8 weeks. A low-fat diet (10% energy, PO) was used as control. Body weight was monitored weekly. At the end of the dietary intervention, myocellular TAG and DAG content and profiles were measured. RESULTS: We here show that HF_CB prevented weight gain after 8 weeks of HF feeding. Furthermore, the HF diet rich in SO prevented the accumulation of both myocellular TAG and DAG. Interestingly, the FA composition of DAG and TAG in skeletal muscle was a reflection of the dietary FA composition. CONCLUSION: Already after a relatively short period, the dietary FA intake relates to the FA composition of the lipid metabolites in the muscle. A diet rich in polyunsaturated FAs seems to prevent myocellular lipid accumulation.

15.
Basic Res Cardiol ; 106(2): 307-15, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21181177

ABSTRACT

Cardiac lipid accumulation is associated with decreased cardiac function and energy status (PCr/ATP). It has been suggested that elevated plasma fatty acid (FA) concentrations are responsible for the cardiac lipid accumulation. Therefore, the aim of the present study was to investigate if elevating plasma FA concentrations by exercise results in an increased cardiac lipid content, and if this influences cardiac function and energy status. Eleven male subjects (age 25.4 ± 1.1 years, BMI 23.6 ± 0.8 kg/m²) performed a 2-h cycling protocol, once while staying fasted and once while ingesting glucose, to create a state of high versus low plasma FA concentrations, respectively. Cardiac lipid content was measured by proton magnetic resonance spectroscopy (¹H-MRS) at baseline, directly after exercise and again 4 h post-exercise, together with systolic function (by multi-slice cine-MRI) and cardiac energy status (by ³¹P-MRS). Plasma FA concentrations were increased threefold during exercise and ninefold during recovery in the fasted state compared with the glucose-fed state (p < 0.01). Cardiac lipid content was elevated at the end of the fasted test day (from 0.26 ± 0.04 to 0.44 ± 0.04%, p = 0.003), while it did not change with glucose supplementation (from 0.32 ± 0.03 to 0.26 ± 0.05%, p = 0.272). Furthermore, PCr/ATP was decreased by 32% in the high plasma FA state compared with the low FA state (n = 6, p = 0.014). However, in the high FA state, the ejection fraction 4 h post-exercise was higher compared with the low FA state (63 ± 2 vs. 59 ± 2%, p = 0.018). Elevated plasma FA concentrations, induced by exercise in the fasted state, lead to increased cardiac lipid content, but do not acutely hamper systolic function. Although the lower cardiac energy status is in line with a lipotoxic action of cardiac lipid content, a causal relationship cannot be proven.


Subject(s)
Exercise/physiology , Fatty Acids/blood , Lipid Metabolism , Myocardium/metabolism , Adult , Energy Metabolism , Humans , Magnetic Resonance Spectroscopy , Male , Oxidation-Reduction , Young Adult
16.
FASEB J ; 24(12): 5052-62, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20807714

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is characterized by weight loss, muscle wasting (in advanced disease ultimately resulting in cachexia), and loss of muscle oxidative phenotype (oxphen). This study investigates the effect of inflammation (as a determinant of muscle wasting) on muscle oxphen by using cell studies combined with analyses of muscle biopsies of patients with COPD and control participants. We analyzed markers (citrate synthase, ß-hydroxyacyl-CoA dehydrogenase, and cytochrome c oxidase IV) and regulators (PGC-1α, PPAR-α, and Tfam) of oxphen in vastus lateralis muscle biopsies of patients with advanced COPD and healthy smoking control participants. Here 17 of 73 patients exhibited elevated muscle TNF-α mRNA levels. In these patients, significantly lower mRNA levels of all oxidative markers/regulators were found. Interestingly, these patients also had a significantly lower body mass index and tended to have less muscle mass. In cultured muscle cells, mitochondrial protein content and myosin heavy chain isoform I (but not II) protein and mRNA levels were reduced on chronic TNF-α stimulation. TNF-α also reduced mitochondrial respiration in a nuclear factor kappaB (NF-κB) -dependent manner. Importantly, TNF-α-induced NF-κB activation decreased promoter transactivation and transcriptional activity of regulators of mitochondrial biogenesis and muscle oxphen. In conclusion, these results demonstrate that TNF-α impairs muscle oxphen in a NF-κB-dependent manner.


Subject(s)
Cachexia/metabolism , Muscle, Skeletal/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Animals , Blotting, Western , Cell Line , Citrate (si)-Synthase/metabolism , DNA-Binding Proteins/metabolism , Electron Transport Complex IV/metabolism , Electrophoretic Mobility Shift Assay , Enzyme-Linked Immunosorbent Assay , Heat-Shock Proteins/metabolism , Humans , Hydro-Lyases/metabolism , Mice , Mitochondrial Proteins/metabolism , Muscle, Skeletal/drug effects , NF-kappa B/genetics , NF-kappa B/metabolism , PPAR alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Pulmonary Disease, Chronic Obstructive/metabolism , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/genetics
17.
Diabetologia ; 53(8): 1714-21, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20422397

ABSTRACT

AIMS/HYPOTHESIS: We previously showed that type 2 diabetic patients are characterised by compromised intrinsic mitochondrial function. Here, we examined if exercise training could increase intrinsic mitochondrial function in diabetic patients compared with control individuals. METHODS: Fifteen male type 2 diabetic patients and 14 male control individuals matched for age, BMI and VO(2max) enrolled in a 12 week exercise intervention programme. Ex vivo mitochondrial function was assessed by high-resolution respirometry in permeabilised muscle fibres from vastus lateralis muscle. Before and after training, insulin-stimulated glucose disposal was examined during a hyperinsulinaemic-euglycaemic clamp. RESULTS: Diabetic patients had intrinsically lower ADP-stimulated state 3 respiration and lower carbonyl cyanide 4-(trifluoro-methoxy)phenylhydrazone (FCCP)-induced maximal oxidative respiration, both on glutamate and on glutamate and succinate, and in the presence of palmitoyl-carnitine (p < 0.05). After training, diabetic patients and control individuals showed increased state 3 respiration on the previously mentioned substrates (p < 0.05); however, an increase in FCCP-induced maximal oxidative respiration was observed only in diabetic patients (p < 0.05). The increase in mitochondrial respiration was accompanied by a 30% increase in mitochondrial content upon training (p < 0.01). After adjustment for mitochondrial density, state 3 and FCCP-induced maximal oxidative respiration were similar between groups after training. Improvements in mitochondrial respiration were paralleled by improvements in insulin-stimulated glucose disposal in diabetic patients, with a tendency for this in control individuals. CONCLUSIONS/INTERPRETATION: We confirmed lower intrinsic mitochondrial function in diabetic patients compared with control individuals. Diabetic patients increased their mitochondrial content to the same extent as control individuals and had similar intrinsic mitochondrial function, which occurred parallel with improved insulin sensitivity.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Exercise/physiology , Mitochondria/physiology , Analysis of Variance , Glucose Clamp Technique , Humans , Insulin/metabolism , Insulin Resistance/physiology , Male , Middle Aged , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Oxygen Consumption
18.
Mol Cell Endocrinol ; 315(1-2): 113-20, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-19804813

ABSTRACT

Pathways involved in mitochondrial biogenesis associated with myogenic differentiation are poorly defined. Therefore, C(2)C(12) myoblasts were differentiated into multi-nucleated myotubes and parameters/regulators of mitochondrial biogenesis were investigated. Mitochondrial respiration, citrate synthase- and beta-hydroxyacyl-CoA dehydrogenase activity as well as protein content of complexes I, II, III and V of the mitochondrial respiratory chain increased 4-8-fold during differentiation. Additionally, an increase in the ratio of myosin heavy chain (MyHC) slow vs MyHC fast protein content was observed. PPAR transcriptional activity and transcript levels of PPAR-alpha, the PPAR co-activator PGC-1alpha, mitochondrial transcription factor A and nuclear respiratory factor 1 increased during differentiation while expression levels of PPAR-gamma decreased. In conclusion, expression and activity levels of genes known for their regulatory role in skeletal muscle oxidative capabilities parallel the increase in oxidative parameters during the myogenic program. In particular, PGC-1alpha and PPAR-alpha may be involved in the regulation of mitochondrial biogenesis during myogenesis.


Subject(s)
Cell Differentiation/physiology , Mitochondria, Muscle/metabolism , Muscle Development/physiology , Animals , Biomarkers/metabolism , Cell Line , Cell Respiration/physiology , DNA, Mitochondrial/genetics , Mice , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/physiology , Myoblasts/cytology , Myoblasts/physiology , Oxidative Phosphorylation , Peroxisome Proliferator-Activated Receptors/genetics , Peroxisome Proliferator-Activated Receptors/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
19.
Am J Physiol Endocrinol Metab ; 297(1): E174-83, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19417127

ABSTRACT

Skeletal muscle pathology associated with a chronic inflammatory disease state (e.g., skeletal muscle atrophy and insulin resistance) is a potential consequence of chronic activation of NF-kappaB. It has been demonstrated that peroxisome proliferator-activated receptors (PPARs) can exert anti-inflammatory effects by interfering with transcriptional regulation of inflammatory responses. The goal of the present study, therefore, was to evaluate whether PPAR activation affects cytokine-induced NF-kappaB activity in skeletal muscle. Using C(2)C(12) myotubes as an in vitro model of myofibers, we demonstrate that PPAR, and specifically PPARgamma, activation potently inhibits inflammatory mediator-induced NF-kappaB transcriptional activity in a time- and dose-dependent manner. Furthermore, PPARgamma activation by rosiglitazone strongly suppresses cytokine-induced transcript levels of the NF-kappaB-dependent genes intracellular adhesion molecule 1 (ICAM-1) and CXCL1 (KC), the murine homolog of IL-8, in myotubes. To verify whether muscular NF-kappaB activity in human subjects is suppressed by PPARgamma activation, we examined the effect of 8 wk of rosiglitazone treatment on muscular gene expression of ICAM-1 and IL-8 in type 2 diabetes mellitus patients. In these subjects, we observed a trend toward decreased basal expression of ICAM-1 mRNA levels. Subsequent analyses in cultured myotubes revealed that the anti-inflammatory effect of PPARgamma activation is not due to decreased RelA translocation to the nucleus or reduced RelA DNA binding. These findings demonstrate that muscle-specific inhibition of NF-kappaB activation may be an interesting therapeutic avenue for treatment of several inflammation-associated skeletal muscle abnormalities.


Subject(s)
Muscle, Skeletal/metabolism , NF-kappa B/antagonists & inhibitors , PPAR gamma/physiology , Animals , Cells, Cultured , Cytokines/pharmacology , Down-Regulation/drug effects , Humans , Hypoglycemic Agents/pharmacology , Inflammation Mediators/pharmacology , Male , Mice , Middle Aged , Muscle, Skeletal/drug effects , NF-kappa B/metabolism , NF-kappa B/physiology , PPAR gamma/agonists , Pyrimidines/pharmacology , Rosiglitazone , Thiazoles/pharmacology , Thiazolidinediones/pharmacology , Transcriptional Activation/drug effects , Transcriptional Activation/genetics
20.
Diabetologia ; 51(9): 1694-7, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18587560

ABSTRACT

AIMS/HYPOTHESIS: Mitochondrial dysfunction has been postulated to underlie muscular fat accumulation, leading to muscular insulin sensitivity and ultimately type 2 diabetes mellitus. Here we re-interpret previously published data on [(13)C]acetate recovery in breath gas obtained during exercise in type 2 diabetic patients and control individuals. METHODS: When infusing [(13)C]palmitate to estimate fat oxidation, part of the label is lost in exchange reactions of the tricarboxylic acid (TCA) cycle. To correct for this loss of label, an acetate recovery factor (ARF) has previously been used, assuming that 100% of the exogenously provided acetate will enter the TCA cycle. The recovery of acetate in breath gas depends on the TCA cycle activity, hence providing an indirect measure of the latter and a marker of mitochondrial function. RESULTS: Re-evaluation of the available literature reveals that the ARF during exercise is highest in lean, healthy individuals, followed by obese individuals and type 2 diabetic patients. CONCLUSIONS/INTERPRETATION: Revisiting previously published findings on the ARF during exercise in type 2 diabetic patients reveals a reduction in muscular TCA cycle flux, reflecting mitochondrial dysfunction, in these patients. How mitochondrial dysfunction is related to type 2 diabetes mellitus-cause or consequence-requires further study.


Subject(s)
Citric Acid Cycle/physiology , Diabetes Mellitus, Type 2/metabolism , Adult , Diabetes Mellitus, Type 2/epidemiology , Humans , Kinetics , Middle Aged , Palmitic Acid/metabolism , Prevalence , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...