Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 127(45): 9399-9408, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37934510

ABSTRACT

Chymotrypsin inhibitor 2 (CI-2) is a well-studied, textbook example of a cooperative, two-state, native ↔ denatured folding transition. A recent hybrid ion mobility spectrometry (IMS)/mass spectrometry (MS) thermal denaturation study of CI-2 (the well-studied truncated 64-residue model) in water reported evidence that this two-state transition involves numerous (∼41) unique native and non-native (denatured) solution conformations. The characterization of so many, often low-abundance, states is possible because of the very high dynamic range of IMS-MS measurements of ionic species that are produced upon electrospraying CI-2 solutions from a variable temperature electrospray ionization source. A thermodynamic analysis of these states revealed large changes in enthalpy (ΔH) and entropy (ΔS) at different temperatures, and it was suggested that such variation might arise because of temperature-dependent conformational changes of the protein in response to changes in the conformational entropy and the dielectric permeability of water, which drops from a value of ε ∼ 79 at 24 °C to ∼ 60 at 82 °C. Herein, we examine how adding methanol to water influences the distributions of CI-2 conformers and their ensuing stabilities. The dielectric constant of a 60:40 water:methanol (MeOH) drops from ε ∼ 60 at 24 °C to ∼ 51 at 64 °C. Although the same set of conformers observed in water appears to be present in 60:40 water:MeOH, the abundance of each is substantially altered by the presence of methanol. Relative free energy values (ΔG) and thermodynamic values [ΔH and ΔS and heat capacities (ΔCp)] are derived from a Gibbs-Helmholtz analysis. A comparison of these data from water and water:MeOH systems allows rare insight into how variations in solvation and temperature affect many-state protein equilibria. While these studies confirm that variations in solvent dielectric constant with temperature affect the distributions of conformers that are observed, our findings suggest that other solvent differences may also affect abundances.

2.
Chem Commun (Camb) ; 54(72): 10076-10079, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30083691

ABSTRACT

Amphiphilic alkoxybenzonitriles (ABNs) of varying chain length are studied at the solution/graphite interface to analyze dynamics of assembly. Competitive self-assembly between ABNs and alkanoic acid solvent is shown by scanning tunneling microscopy (STM) to be controlled by concentration and molecular size. Molecular dynamics (MD) simulations reveal key roles of the sub-nanosecond fundamental steps of desorption, adsorption, and on-surface motion. We discovered asymmetry in desorption-adsorption steps. Desorption starting from alkyl chain detachment from the surface is favored due to dynamic occlusion by neighbouring chains. Even though the nitrile head has a strong solvent affinity, it more frequently re-adsorbs following a detachment event.

SELECTION OF CITATIONS
SEARCH DETAIL
...