Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: mdl-34499623

ABSTRACT

Autophagy has long been associated with longevity, and it is well established that autophagy reverts and prevents vascular deterioration associated with aging and cardiovascular diseases. Currently, our understanding of how autophagy benefits the vasculature is centered on the premise that reduced autophagy leads to the accumulation of cellular debris, resulting in inflammation and oxidative stress, which are then reversed by reconstitution or upregulation of autophagic activity. Evolutionarily, autophagy also functions to mobilize endogenous nutrients in response to starvation. Therefore, we hypothesized that the biosynthesis of the most physiologically abundant ketone body, ß-hydroxybutyrate (ßHB), would be autophagy dependent and exert vasodilatory effects via its canonical receptor, Gpr109a. To the best of our knowledge, we have revealed for the first time that the biosynthesis of ßHB can be impaired by preventing autophagy. Subsequently, ßHB caused potent vasodilation via potassium channels but not Gpr109a. Finally, we observed that chronic consumption of a high-salt diet negatively regulates both ßHB biosynthesis and hepatic autophagy and that reconstitution of ßHB bioavailability prevents high-salt diet-induced endothelial dysfunction. In summary, this work offers an alternative mechanism to the antiinflammatory and antioxidative stress hypothesis of autophagy-dependent vasculoprotection. Furthermore, it reveals a direct mechanism by which ketogenic interventions (e.g., intermittent fasting) improve vascular health.


Subject(s)
3-Hydroxybutyric Acid/therapeutic use , Autophagy/drug effects , Ketone Bodies/therapeutic use , Vasodilator Agents/therapeutic use , 3-Hydroxybutyric Acid/pharmacology , Animals , Humans , Ketone Bodies/pharmacology , Mice , Models, Animal , Rats , Vasodilator Agents/pharmacology
2.
Function (Oxf) ; 2(1): zqaa029, 2021.
Article in English | MEDLINE | ID: mdl-33363281

ABSTRACT

Exercise capacity is a strong predictor of all-cause morbidity and mortality in humans. However, the associated hemodynamic traits that link this valuable indicator to its subsequent disease risks are numerable. Additionally, exercise capacity has a substantial heritable component and genome-wide screening indicates a vast amount of nuclear and mitochondrial DNA (mtDNA) markers are significantly associated with traits of physical performance. A long-term selection experiment in rats confirms a divide for cardiovascular risks between low- and high-capacity runners (LCR and HCR, respectively), equipping us with a preclinical animal model to uncover new mechanisms. Here, we evaluated the LCR and HCR rat model system for differences in vascular function at the arterial resistance level. Consistent with the known divide between health and disease, we observed that LCR rats present with resistance artery and perivascular adipose tissue dysfunction compared to HCR rats that mimic qualities important for health, including improved vascular relaxation. Uniquely, we show by generating conplastic strains, which LCR males with mtDNA of female HCR (LCR-mtHCR/Tol) present with improved vascular function. Conversely, HCR-mtLCR/Tol rats displayed indices for cardiac dysfunction. The outcome of this study suggests that the interplay between the nuclear genome and the maternally inherited mitochondrial genome with high intrinsic exercise capacity is a significant factor for improved vascular physiology, and animal models developed on an interaction between nuclear and mtDNA are valuable new tools for probing vascular risk factors in the offspring.


Subject(s)
DNA, Mitochondrial , Running , Male , Humans , Female , Animals , Rats , DNA, Mitochondrial/genetics , Running/physiology , Exercise Tolerance , Adipose Tissue , Hemodynamics
3.
Am J Hypertens ; 33(9): 804-812, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32533696

ABSTRACT

Hypertension has been described as a condition of premature vascular aging, relative to actual chronological age. In fact, many factors that contribute to the deterioration of vascular function as we age are accelerated and exacerbated in hypertension. Nonetheless, the precise mechanisms that underlie the aged phenotype of arteries from hypertensive patients and animals remain elusive. Classically, the aged phenotype is the buildup of cellular debris and dysfunctional organelles. One means by which this can occur is insufficient degradation and cellular recycling. Mitophagy is the selective catabolism of damaged mitochondria. Mitochondria are organelles that contribute importantly to the determination of cellular age via their production of reactive oxygen species (ROS; Harman's free radical theory of aging). Therefore, the accumulation of dysfunctional and ROS-producing mitochondria could contribute to the acceleration of vascular age in hypertension. This review will address and critically evaluate the current literature on mitophagy in vascular physiology and hypertension.


Subject(s)
Aging, Premature/physiopathology , Endothelial Cells/metabolism , Hypertension/physiopathology , Mitophagy , Myocytes, Smooth Muscle/metabolism , Aging, Premature/metabolism , Animals , Autophagy/physiology , Blood Vessels/metabolism , Blood Vessels/physiopathology , Humans , Hypertension/metabolism , Mitochondria/metabolism , Muscle, Smooth, Vascular , Reactive Oxygen Species/metabolism
4.
Vascul Pharmacol ; 125-126: 106633, 2020.
Article in English | MEDLINE | ID: mdl-31843471

ABSTRACT

Commensal microbiota within a holobiont contribute to the overall health of the host via mutualistic symbiosis. Disturbances in such symbiosis is prominently correlated with a variety of diseases affecting the modern society of humans including cardiovascular diseases, which are the number one contributors to human mortality. Given that a hallmark of all cardiovascular diseases is changes in vascular function, we hypothesized that depleting microbiota from a holobiont would induce vascular dysfunction. To test this hypothesis, young mice of both sexes raised in germ-free conditions were examined vascular contractility and structure. Here we observed that male and female germ-free mice presented a decrease in contraction of resistance arteries. These changes were more pronounced in germ-free males than in germ-free females mice. Furthermore, there was a distinct change in vascular remodeling between males and females germ-free mice. Resistance arteries from male germ-free mice demonstrated increased vascular stiffness, as shown by the leftward shift in the stress-strain curve and inward hypotrophic remodeling, a characteristic of chronic reduction in blood flow. On the other hand, resistance arteries from germ-free female mice were similar in the stress-strain curves to that of conventionally raised mice, but were distinctly different and showed outward hypertrophic remodeling, a characteristic seen in aging. Interestingly, we observed that reactive oxygen species (ROS) generation from bone marrow derived neutrophils is blunted in female germ-free mice, but it is exacerbated in male germ-free mice. In conclusion, these observations indicate that commensal microbiota of a holobiont are central to maintain proper vascular function and structure homeostasis, especially in males.


Subject(s)
Bacteria/metabolism , Gastrointestinal Microbiome/physiology , Mesenteric Arteries/physiology , Vascular Remodeling , Vasoconstriction , Animals , Elastic Modulus , Female , Germ-Free Life , Host Microbial Interactions , Male , Mesenteric Arteries/metabolism , Mice, Inbred C57BL , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Sex Factors , Vascular Resistance , Vascular Stiffness
SELECTION OF CITATIONS
SEARCH DETAIL
...